Gradient estimates for harmonic and generalized harmonic functions

Miloš Arsenović
Department of Mathematics, University of Belgrade, Serbia
Joint work with Jelena Gajić and Miodrag Mateljević

OTHA Seminar, May 2, 2024

The class of (α, β)-harmonic functions in \mathbb{D}

Let, for $\alpha, \beta \in \mathbb{C}$

$$
L_{\alpha, \beta}=\left(1-|z|^{2}\right)\left(\left(1-|z|^{2}\right) \frac{\partial^{2}}{\partial z \partial \bar{z}}+\alpha z \frac{\partial}{\partial z}+\beta \bar{z} \frac{\partial}{\partial \bar{z}}-\alpha \beta\right)
$$

Let, for $\alpha, \beta \in \mathbb{C}$

$$
L_{\alpha, \beta}=\left(1-|z|^{2}\right)\left(\left(1-|z|^{2}\right) \frac{\partial^{2}}{\partial z \partial \bar{z}}+\alpha z \frac{\partial}{\partial z}+\beta \bar{z} \frac{\partial}{\partial \bar{z}}-\alpha \beta\right)
$$

(1) $L_{0,0}=4^{-1}\left(1-|z|^{2}\right)^{2} \Delta$,
(2) A function u in $C^{2}(\mathbb{D})$ is (α, β)-harmonic if $L_{\alpha, \beta} u=0$.
(3) The vector space of all such functions is denoted by $h_{\alpha, \beta}(\mathbb{D})$.

Let, for $\alpha, \beta \in \mathbb{C}$

$$
L_{\alpha, \beta}=\left(1-|z|^{2}\right)\left(\left(1-|z|^{2}\right) \frac{\partial^{2}}{\partial z \partial \bar{z}}+\alpha z \frac{\partial}{\partial z}+\beta \bar{z} \frac{\partial}{\partial \bar{z}}-\alpha \beta\right)
$$

(1) $L_{0,0}=4^{-1}\left(1-|z|^{2}\right)^{2} \Delta$,
(2) A function u in $C^{2}(\mathbb{D})$ is (α, β)-harmonic if $L_{\alpha, \beta} u=0$.
(3) The vector space of all such functions is denoted by $h_{\alpha, \beta}(\mathbb{D})$.
(9) If $\alpha>-1$ the $(0, \alpha)$-harmonic functions are called α-harmonic
(5) if $\alpha \in \mathbb{R}$ the $\left(\frac{\alpha}{2}, \frac{\alpha}{2}\right)$-harmonic functions are called T_{α}-harmonic functions.

Early studies of (α, β)-harmonic functions

The spaces we deal with appeared in a more general contest of the unit ball in \mathbb{C}^{n} in connection with H^{p} theory for the Heisenberg group, there $z \partial_{z}$ and $\bar{z} \partial_{\bar{z}}$ are replaced by operators

$$
R=\sum_{j} z_{j} \partial_{z_{j}}, \quad \bar{R}=\sum_{j} \overline{z_{j}} \partial_{\bar{z}_{j}}
$$

[Gel] D. Geller, Some results in H^{p} theory for the Heisenberg group, Duke Math. J., 47 (1980) 365-390.
Later these spaces were investigated in the paper
[ABC] P. Ahern, J. Bruna, C. Cascante, H^{P}-theory for generalized \mathcal{M}-harmonic functions in the unit ball, Indiana Univ. Math. J., 45(2) (1996) 103-135.
The case of the unit disc was treated in [KO] M. Klintborg, A. Olofsson, A series expansion for generalized harmonic functions, Analysis and Math. Physics, vol 11, (2021)

The function $u_{\alpha, \beta}$: pointwise and L^{1} estimate
Let $\alpha, \beta \in \mathbb{C}$. The following function is used to construct integral representations of (α, β)-harmonic functions:

$$
\begin{equation*}
u_{\alpha, \beta}(z)=\frac{\left(1-|z|^{2}\right)^{\alpha+\beta+1}}{(1-z)^{\alpha+1}(1-\bar{z})^{\beta+1}}, \quad|z|<1 \tag{1}
\end{equation*}
$$

The function $u_{\alpha, \beta}$: pointwise and L^{1} estimate
Let $\alpha, \beta \in \mathbb{C}$. The following function is used to construct integral representations of (α, β)-harmonic functions:

$$
\begin{equation*}
u_{\alpha, \beta}(z)=\frac{\left(1-|z|^{2}\right)^{\alpha+\beta+1}}{(1-z)^{\alpha+1}(1-\bar{z})^{\beta+1}}, \quad|z|<1 \tag{1}
\end{equation*}
$$

Theorem (KO 2021)

Let $\alpha, \beta \in \mathbb{C}$. Then $u_{\alpha, \beta} \in h_{\alpha, \beta}(\mathbb{D})$

The function $u_{\alpha, \beta}$: pointwise and L^{1} estimate
Let $\alpha, \beta \in \mathbb{C}$. The following function is used to construct integral representations of (α, β)-harmonic functions:

$$
\begin{equation*}
u_{\alpha, \beta}(z)=\frac{\left(1-|z|^{2}\right)^{\alpha+\beta+1}}{(1-z)^{\alpha+1}(1-\bar{z})^{\beta+1}}, \quad|z|<1 \tag{1}
\end{equation*}
$$

Theorem (KO 2021)

Let $\alpha, \beta \in \mathbb{C}$. Then $u_{\alpha, \beta} \in h_{\alpha, \beta}(\mathbb{D})$ and

$$
\begin{equation*}
\left|u_{\alpha, \beta}(z)\right| \leq e^{\frac{\pi}{2}|\Im \alpha-\Im \beta|} \frac{\left(1-|z|^{2}\right)^{\Re \alpha+\Re \beta+1}}{|1-z|^{\mid \Re \alpha+\Re \beta+2}}, \quad|z|<1 . \tag{2}
\end{equation*}
$$

The function $u_{\alpha, \beta}$: pointwise and L^{1} estimate

Let $\alpha, \beta \in \mathbb{C}$. The following function is used to construct integral representations of (α, β)-harmonic functions:

$$
\begin{equation*}
u_{\alpha, \beta}(z)=\frac{\left(1-|z|^{2}\right)^{\alpha+\beta+1}}{(1-z)^{\alpha+1}(1-\bar{z})^{\beta+1}}, \quad|z|<1 \tag{1}
\end{equation*}
$$

Theorem (KO 2021)

Let $\alpha, \beta \in \mathbb{C}$. Then $u_{\alpha, \beta} \in h_{\alpha, \beta}(\mathbb{D})$ and

$$
\begin{equation*}
\left|u_{\alpha, \beta}(z)\right| \leq e^{\frac{\pi}{2}|\Im \alpha-\Im \beta|} \frac{\left(1-|z|^{2}\right)^{\Re \alpha+\Re \beta+1}}{|1-z|^{\Re \alpha+\Re \beta+2}}, \quad|z|<1 . \tag{2}
\end{equation*}
$$

Moreover, if $\Re \alpha+\Re \beta>-1$, the following estimate holds:

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|u_{\alpha, \beta}\left(r e^{i \theta}\right)\right| d \theta \leq e^{\frac{\pi}{2}|\Im \alpha-\Im \beta|} \frac{\Gamma(\Re \alpha+\Re \beta+1)}{\Gamma^{2}\left(\frac{\Re \alpha+\Re \beta}{2}+1\right)}, \quad 0 \leq r<1 .
$$

The derivatives of $u_{\alpha, \beta}, \mathrm{KO}$

$$
\begin{aligned}
& \frac{\partial u_{\alpha, \beta}}{\partial z}(z)=\left(-(\alpha+\beta+1) \frac{\bar{z}}{1-|z|^{2}}+\frac{\alpha+1}{1-z}\right) u_{\alpha, \beta}(z), \\
& \frac{\partial u_{\alpha, \beta}}{\partial \bar{z}}(z)=\left(-(\alpha+\beta+1) \frac{z}{1-|z|^{2}}+\frac{\beta+1}{1-\bar{z}}\right) u_{\alpha, \beta}(z) .
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial u_{\alpha, \beta}}{\partial z}(z) & =\left(-(\alpha+\beta+1) \frac{\bar{z}}{1-|z|^{2}}+\frac{\alpha+1}{1-z}\right) u_{\alpha, \beta}(z) \\
\frac{\partial u_{\alpha, \beta}}{\partial \bar{z}}(z) & =\left(-(\alpha+\beta+1) \frac{z}{1-|z|^{2}}+\frac{\beta+1}{1-\bar{z}}\right) u_{\alpha, \beta}(z) . \\
\partial^{k} u_{\alpha, \beta}(z) & =\frac{(\alpha+1)_{k}}{(1-z)^{k}} u_{\alpha, \beta}(z)+\bar{z} g_{k}(z), \quad|z|<1, \quad k \in \mathbb{N}
\end{aligned}
$$

where, for $z \in \mathbb{D}, g_{1}(z)=-(\alpha+\beta+1)\left(1-|z|^{2}\right)^{-1} u_{\alpha, \beta}(z)$ and

$$
g_{k}(z)=\frac{(\alpha+1)_{k-1}}{(1-z)^{k-1}} g_{1}(z)+\partial^{k-1} g_{k-1}(z) \in C^{\infty}(\mathbb{D}), \quad k \geq 2
$$

In the following we assume that

$$
\alpha, \beta \in \mathbb{C} \backslash \mathbb{Z}^{-}=\mathbb{C} \backslash\{-1,-2, \ldots\}, \Re \alpha+\Re \beta>-1
$$

The (α, β)-Poisson kernel is defined by

$$
\begin{equation*}
P_{\alpha, \beta}(z, \zeta)=c_{\alpha, \beta} u_{\alpha, \beta}(z \bar{\zeta}), \quad z \in \mathbb{D}, \quad \zeta \in \mathbb{T} \tag{4}
\end{equation*}
$$

where a normalizing constant $c_{\alpha, \beta}$ is given by

$$
\begin{equation*}
c_{\alpha, \beta}=\frac{\Gamma(\alpha+1) \Gamma(\beta+1)}{\Gamma(\alpha+\beta+1)} \tag{5}
\end{equation*}
$$

This choice of $c_{\alpha, \beta}$ ensures that

$$
\lim _{|z| \rightarrow 1} \int_{\mathbb{T}} P_{\alpha, \beta}(z, \zeta) d m(\zeta)=1
$$

The (α, β)-Poisson integral

Definition

For $f \in L^{1}(\mathbb{T})$ the (α, β)-Poisson integral of f is defined by

$$
\begin{equation*}
P_{\alpha, \beta}[f](z)=\int_{\mathbb{T}} P_{\alpha, \beta}(z, \zeta) f(\zeta) d m(\zeta), \quad z \in \mathbb{D} \tag{6}
\end{equation*}
$$

Since $P_{\alpha, \beta}(z, \zeta)$ is (α, β) - harmonic with respect to $z \in \mathbb{D}$ for each fixed $\zeta \in \mathbb{T}$ we have

$$
P_{\alpha, \beta}[f] \in h_{\alpha, \beta}(\mathbb{D}), \quad f \in L^{1}(\mathbb{T})
$$

Definition of $h_{\alpha, \beta}^{p}(\mathbb{D})$ spaces

Definition

Let $1 \leq p \leq \infty$. The space $h_{\alpha, \beta}^{p}(\mathbb{D})$ consists of all $u \in h_{\alpha, \beta}(\mathbb{D})$ such that

$$
\begin{gathered}
\|u\|_{\alpha, \beta ; p}=\sup _{0 \leq r<1}\left(\int_{\mathbb{T}}|u(r \zeta)|^{p} d m(\zeta)\right)^{\frac{1}{p}}<\infty, \quad 1 \leq p<\infty \\
\|u\|_{\alpha, \beta ; p}=\sup _{z \in \mathbb{D}}|u(z)|<+\infty, \quad p=+\infty
\end{gathered}
$$

Theorem

Let $u \in h_{\alpha, \beta}^{p}(\mathbb{D}), 1<p \leq \infty$. Then there is a unique $\psi \in L^{p}(\mathbb{T})$ such that $u=P_{\alpha, \beta}[\psi]$.

Jelena Gajić, Miloš Arsenović and Miodrag Mateljević, H^{p} theory of separately (α, β)-harmonic functions in the unit polydisc, arXiv math.CV 2305.10858 (2023)

A review of related results: T_{α}-harmonic case

$$
\begin{equation*}
\|D u(z)\|=\sup \{|D u(z) \zeta|:|\zeta|=1\}=\left|u_{z}(z)\right|+\left|u_{\bar{z}}(z)\right| . \tag{7}
\end{equation*}
$$

(1) Colonna, 1989: If $u: \mathbb{D} \rightarrow \mathbb{D}$ is harmonic, then for $z \in \mathbb{D}$

$$
\|D u(z)\| \leq \frac{4}{\pi} \frac{1}{1-|z|^{2}} .
$$

(c) Chen, Vuorinen, 2015: If $\alpha>-1$ and $u \in h_{\alpha / 2, \alpha / 2}^{\infty}(\mathbb{D})$, then

$$
\|D u(z)\| \leq \frac{2+\alpha+|\alpha z|}{1-|z|^{2}}\|u\|_{\alpha / 2, \alpha / 2,+\infty}, \quad z \in \mathbb{D} .
$$

- Khalfallah, Mateljević, 2021: Under the same assumptions:

$$
\|D u(0)\| \leq \frac{2(\alpha+2)}{\pi} \frac{\Gamma^{2}\left(\frac{\alpha}{2}+1\right)}{\Gamma(\alpha+1)}\|u\|_{\alpha / 2, \alpha / 2,+\infty} .
$$

A review of related results: α-harmonic case

(1) Li, Wang, Xiao, 2017:

Suppose $u \in C(\overline{\mathbb{D}}) \cap h_{0, \alpha}(\mathbb{D})$ where $\alpha>-1$. Then

$$
\|D u(z)\| \leq 2(\alpha+2) \frac{\Gamma(\alpha+1)}{\Gamma^{2}\left(\frac{\alpha}{2}+1\right)} \frac{1}{1-|z|^{2}}\|u\|_{0, \alpha,+\infty}, \quad z \in \mathbb{D} .
$$

(2) P. Li, Rasila, Wang, 2020; M. Li, X. Chen, 2022:

For φ in $C(\mathbb{T})$ we have:

$$
\left\|D P_{0, \alpha}[\varphi](z)\right\| \leq\left\{\begin{array}{lc}
2^{1-\alpha}\left(1-|z|^{2}\right)^{\alpha-1}\|\varphi\|_{\infty}, & -1<\alpha<0 \\
(1+\alpha) 2^{1+\alpha} \frac{1}{1-|z|^{2}}\|\varphi\|_{\infty}, & \alpha \geq 0
\end{array}\right.
$$

A case of two real parameters α and β

Note that in all of the above results we had one parameter case and moreover all the estimates are obtained in the supremum norm. The next result deals with two parameters case, in the supremum norm.
(1) Khalfallah, Mhamdi,2024: Let $\alpha, \beta \in(-1,+\infty)$ where $\alpha+\beta>-1$. Then, for $\varphi \in C(\mathbb{T})$:

$$
\begin{aligned}
\left\|D P_{\alpha, \beta}[\varphi](z)\right\| \leq & \left|\frac{\Gamma(\alpha+1) \Gamma(\beta+1)}{\Gamma(\alpha+\beta+1)}\right| \frac{\Gamma(\alpha+\beta+1)}{\Gamma^{2}\left(\frac{\alpha+\beta+2}{2}\right)} \\
& \cdot \frac{|\alpha+1|+|\beta+1|+|\alpha|+|\beta|}{1-|z|^{2}}\|\varphi\|_{\infty}, \quad z \in \mathbb{D} .
\end{aligned}
$$

General case: overview

We generalize all of the above results, except Colonna's on harmonic functions. The results, obtained with J. Gajic, will apear in JMAA.
(1) All of our results are formulated for general α and β in $\mathbb{C} \backslash \mathbb{Z}_{-}, \Re \alpha+\Re \beta>-1$.

General case: overview

We generalize all of the above results, except Colonna's on harmonic functions. The results, obtained with J. Gajic, will apear in JMAA.
(1) All of our results are formulated for general α and β in $\mathbb{C} \backslash \mathbb{Z}_{-}, \Re \alpha+\Re \beta>-1$.
(2) Earlier results treated only the case $p=+\infty$, we consider $1 \leq p \leq+\infty$.

General case: overview

We generalize all of the above results, except Colonna's on harmonic functions. The results, obtained with J. Gajic, will apear in JMAA.
(1) All of our results are formulated for general α and β in $\mathbb{C} \backslash \mathbb{Z}_{-}, \Re \alpha+\Re \beta>-1$.
(2) Earlier results treated only the case $p=+\infty$, we consider $1 \leq p \leq+\infty$.
(3) Our estimates are sharp at $z=0$ for all $1 \leq p \leq+\infty$.

General case: overview

We generalize all of the above results, except Colonna's on harmonic functions. The results, obtained with J. Gajic, will apear in JMAA.
(1) All of our results are formulated for general α and β in $\mathbb{C} \backslash \mathbb{Z}_{-}, \Re \alpha+\Re \beta>-1$.
(2) Earlier results treated only the case $p=+\infty$, we consider $1 \leq p \leq+\infty$.
(3) Our estimates are sharp at $z=0$ for all $1 \leq p \leq+\infty$.
(9) Our estimates are improvement of known estimate for general z given by Khalfallah and Mhamdi

General case: overview

We generalize all of the above results, except Colonna's on harmonic functions. The results, obtained with J. Gajic, will apear in JMAA.
(1) All of our results are formulated for general α and β in $\mathbb{C} \backslash \mathbb{Z}_{-}, \Re \alpha+\Re \beta>-1$.
(2) Earlier results treated only the case $p=+\infty$, we consider $1 \leq p \leq+\infty$.
(3) Our estimates are sharp at $z=0$ for all $1 \leq p \leq+\infty$.
(9) Our estimates are improvement of known estimate for general z given by Khalfallah and Mhamdi
(5) We do not equire continuity up to the boundary when the estimate is in the supremum norm

General case: overview

We generalize all of the above results, except Colonna's on harmonic functions. The results, obtained with J. Gajic, will apear in JMAA.
(1) All of our results are formulated for general α and β in $\mathbb{C} \backslash \mathbb{Z}_{-}, \Re \alpha+\Re \beta>-1$.
(2) Earlier results treated only the case $p=+\infty$, we consider $1 \leq p \leq+\infty$.
(3) Our estimates are sharp at $z=0$ for all $1 \leq p \leq+\infty$.
(9) Our estimates are improvement of known estimate for general z given by Khalfallah and Mhamdi
(5) We do not equire continuity up to the boundary when the estimate is in the supremum norm
(0) We obtain asymptoticaly sharp estimates, as $|z| \rightarrow 1$, of derivatives of arbitrary order.

A formula for $\left\|D P_{\alpha, \beta}[\varphi](z)\right\|$

For φ in $L^{1}(\mathbb{T})$ and z in \mathbb{D} we have

$$
\begin{aligned}
\left\|D P_{\alpha, \beta}[\varphi](z)\right\| & =\left|c_{\alpha, \beta}\right|\left[\left|\int_{\mathbb{T}}\left(-\frac{(\alpha+\beta+1) \bar{z}}{1-|z|^{2}}+\frac{\alpha+1}{1-z \bar{\zeta} \bar{\zeta}}\right) u_{\alpha, \beta}(z \bar{\zeta}) \varphi(\zeta) d m(\zeta)\right|\right. \\
& \left.+\left|\int_{\mathbb{T}}\left(-\frac{(\alpha+\beta+1) z}{1-|z|^{2}}+\frac{\beta+1}{1-\overline{z \zeta} \zeta}\right) u_{\alpha, \beta}(\bar{z}) \varphi(\zeta) d m(\zeta)\right|\right], \\
\left\|D P_{\alpha, \beta}[\varphi](0)\right\| & =\mid c_{\alpha, \beta}\left(\left|\int_{\mathbb{T}}(\alpha+1) \bar{\zeta} \varphi(\zeta) d m(\zeta)\right|+\left|\int_{\mathbb{T}}(\beta+1) \zeta \varphi(\zeta) d m(\zeta)\right|\right) .
\end{aligned}
$$

Setting $\lambda_{1}=|\alpha+1|, \lambda_{2}=|\beta+1|$ and

$$
\begin{equation*}
I(\varphi)=\lambda_{1}\left|\int_{\mathbb{T}} \bar{\zeta} \varphi(\zeta) d m(\zeta)\right|+\lambda_{2}\left|\int_{\mathbb{T}} \zeta \varphi(\zeta) d m(\zeta)\right| . \tag{8}
\end{equation*}
$$

we have $\left\|D P_{\alpha, \beta}[\varphi](0)\right\|=\left|c_{\alpha, \beta}\right| I(\varphi), \quad \varphi \in L^{1}(\mathbb{T})$.

Sharp estimate for $\left\|D P_{\alpha, \beta}[\varphi](0)\right\|$ in terms of $\|\varphi\|_{p}$

Lemma

For every $\varphi \in L^{1}(\mathbb{T})$ we have

$$
\begin{equation*}
I(\varphi)=\frac{1}{2 \pi} \max _{|\eta|=1}\left|\int_{-\pi}^{\pi} e^{-i t} \varphi\left(e^{i t}\right)\left(\lambda_{1}+\lambda_{2} \frac{\bar{\eta}}{\eta} e^{2 i t}\right) d t\right| \tag{10}
\end{equation*}
$$

Theorem

Let $1 \leq p \leq+\infty$ and let q be the exponent conjugate to p. Then
$\sup _{\|\varphi\|_{p} \leq 1}\left\|D P_{\alpha, \beta}[\varphi](0)\right\|=\frac{\left|c_{\alpha, \beta}\right|}{2 \pi}\left(\int_{-\pi}^{\pi}| | \alpha+1\left|+|\beta+1| e^{2 i t}\right|^{q} d t\right)^{\frac{1}{q}}$,
with obvious modification in the case $p=1, q=+\infty$.

Sharp estimate of $\left\|D P_{\alpha, \beta}[\varphi](0)\right\|$ in terms of $\|\varphi\|_{\infty}$

This is, of course, a special case of the previous Theorem: For all $\varphi \in L^{\infty}(\mathbb{T})$ we have

$$
\left\|D P_{\alpha, \beta}[\varphi](0)\right\| \leq D(\alpha, \beta)\|\varphi\|_{\infty}
$$

where the constant

$$
D(\alpha, \beta)=\frac{2\left|c_{\alpha, \beta}\right|(|\alpha+1|+|\beta+1|) E\left(2 \frac{\sqrt{|(\alpha+1)(\beta+1)|}}{|\alpha+1|+|\beta+1|}\right)}{\pi}
$$

on the right hand side is the best possible. Here $E(k)$ is complete elliptic integral of the second kind.

Special case: T_{α}-harmonic functions

(1) T_{α}-harmonic functions where $\alpha>-1$ is real. ($(\alpha / 2, \alpha / 2)$-harmonic functions).

$$
\|D u(0)\| \leq \frac{2(\alpha+2)}{\pi} \frac{\Gamma^{2}\left(\frac{\alpha}{2}+1\right)}{\Gamma(\alpha+1)}, \quad u=P_{\alpha / 2, \alpha / 2}[\varphi], \quad\|\varphi\|_{\infty} \leq 1
$$

(2) Colonna's estimate at the origin with constant $4 / \pi$.

An estimate of $\left\|D P_{\alpha, \beta}[\varphi](z)\right\|$ in terms of $\|\varphi\|_{p}$

Lemma

Let $u_{\alpha, \beta}$ be as in (1) and $1 \leq p<\infty$. Then for $z \in \mathbb{D}$
$\int_{\mathbb{T}}\left|u_{\alpha, \beta}(z \bar{\zeta})\right|^{p} d m(\zeta) \leq e^{\frac{p \pi}{2}|\Im \alpha-\Im \beta|} \frac{\Gamma(p(\Re \alpha+\Re \beta+2)-1)}{\Gamma^{2}\left(\frac{p(\Re \alpha+\Re \beta+2)}{2}\right)}\left(1-|z|^{2}\right)^{1-p}$.

Theorem

Let $\varphi \in L^{p}(\mathbb{T}), 1 \leq p \leq \infty$. Then

$$
\left\|D P_{\alpha, \beta}[\varphi](z)\right\| \leq C_{\alpha, \beta, p} \frac{|\alpha+1|+|\beta+1|+|\alpha z|+|\beta z|}{\left(1-|z|^{2}\right)^{1+\frac{1}{p}}}\|\varphi\|_{L^{p}(\mathbb{T})}
$$

where $C_{\alpha, \beta, p}$ is a constant that depends only on α, β and p.

Special cases of the previous thteorem

(1) For T_{α}-harmonic function $u=P_{\alpha / 2, \alpha / 2}[\varphi]$ where $\alpha>-1$

$$
\|D u(z)\| \leq \frac{2+\alpha+|\alpha z|}{1-|z|^{2}}\|\varphi\|_{\infty}, \quad f=P_{\alpha / 2, \alpha / 2}[\varphi]
$$

(2) The case of α-harmonic funcgtions:

$$
\begin{equation*}
\left\|D P_{0, \alpha}[\varphi](z)\right\| \leq(|\alpha|+\alpha+2) \frac{\Gamma(\alpha+1)}{\Gamma^{2}\left(\frac{\alpha}{2}+1\right)} \cdot \frac{\|\varphi\|_{\infty}}{1-|z|^{2}}, \quad \alpha>-1 . \tag{13}
\end{equation*}
$$

SHARPER, $-1<\alpha<+\infty$.

Lemma

Let $u_{\alpha, \beta}$ be as in (1) for some $\alpha, \beta \in \mathbb{C}$. For all $k \geq 0, I \geq 0$ the equality holds
$\partial^{k} \bar{\partial}^{\prime} u_{\alpha, \beta}(z)=P_{k, I}\left(\frac{1}{1-|z|^{2}}, \frac{1}{1-z}, \frac{1}{1-\bar{z}}, f_{1}(z), \ldots, f_{N}(z)\right) u_{\alpha, \beta}(z)$,
where $N=N_{k, l}$, the functions $f_{1}, \ldots, f_{N_{k, l}}$ are C^{∞} on $\mathbb{C}^{\star}=\mathbb{C} \backslash\{0\}$ and $P_{k, l}$ is a polynomial whose total degree in $\frac{1}{1-|z|^{2}}, \frac{1}{1-z}, \frac{1}{1-\bar{z}}$ is equal to $k+I$. In other words,

$$
P_{k, l}=P_{k, I}\left(\frac{1}{1-|z|^{2}}, \frac{1}{1-z}, \frac{1}{1-\bar{z}}\right)
$$

is polynomial with coefficients from $C^{\infty}\left(\mathbb{C}^{\star}\right)$ and $\operatorname{deg} P_{k, I}=k+I$.

Estimates of higher order derivatives in terms of L^{P} norms

Proposition

Let $u_{\alpha, \beta}$ be as in (1) for some $\alpha, \beta \in \mathbb{C}$. Then

$$
\begin{equation*}
\left|\partial^{k} \bar{\partial}^{\prime} u_{\alpha, \beta}(z)\right| \leq C_{\alpha, \beta, k, I} \frac{\left|u_{\alpha, \beta}(z)\right|}{\left(1-|z|^{2}\right)^{k+\prime}} \quad z \in \mathbb{D} . \tag{14}
\end{equation*}
$$

Theorem

Let $\varphi \in L^{p}(\mathbb{T}), 1 \leq p \leq+\infty$.

$$
\begin{equation*}
\left|\partial^{k} \bar{\partial}^{\prime} u(z)\right| \leq C_{\alpha, \beta, k, l, p} \frac{\|\varphi\|_{p}}{\left(1-|z|^{2}\right)^{k+l+\frac{1}{p}}} \tag{15}
\end{equation*}
$$

for $u=P_{\alpha, \beta}[\varphi]$.

Inhomogeneous case

J. Gajic investigated further inhomogeneous equation $L_{\alpha, \beta}=g$, a solution operator is given by Green's operator $G_{\alpha, \beta}$. Let us state a couple of results she obtained:

$$
\begin{gathered}
\left|G_{\alpha, \beta} g(z)\right| \leq C\left(1-|z|^{2}\right)^{\Re \alpha+\Re \beta+1 / q}\|g\|_{L^{p}(\mathbb{D})} . \\
\left|D G_{\alpha, \beta} g(z)\right| \leq C\left(1-|z|^{2}\right)^{\Re \alpha+\Re \beta}\|g\|_{\infty}, \quad g \in C(\overline{\mathbb{D}}) .
\end{gathered}
$$

Harmonc functions in the upper half space

(1) $\mathbb{H}^{n+1}=\left\{(x, y) \mid x \in \mathbb{R}^{n}, y>0\right\}$,
(2) The surface measure of the unit sphere $\mathbb{S}^{n-1}=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$ is $n \omega_{n}$,

$$
P(x, y)=P_{y}(x)=c_{n} \frac{y}{\left(y^{2}+|x|^{2}\right)^{(n+1) / 2}}, \quad x \in \mathbb{R}^{n}, \quad y>0
$$

where

$$
c_{n}=\Gamma\left(\frac{n+1}{2}\right) \pi^{-\frac{n+1}{2}} .
$$

The harmonic extension of a function φ on \mathbb{R}^{n} to \mathbb{H}^{n+1} is

$$
P[\varphi](x, y)=c_{n} \int_{\mathbb{R}^{n}} \varphi(t) \frac{y}{\left(y^{2}+|x-t|^{2}\right)^{(n+1) / 2}} d t
$$

Modulif of continuity

Definition

We say that a function $\omega:[0,+\infty) \rightarrow \mathbb{R}$ is a modulus of continuity if it is continuous, concave and increasing on $[0,+\infty)$ and strictly positive on $(0,+\infty)$.

Definition

We say that a modulus of continuity satisfies (A) condition if there is a constant M such that

$$
\begin{equation*}
\int_{1}^{\infty} \omega(y s) s^{-3} d s \leq M \omega(y) \quad y>0 \tag{A}
\end{equation*}
$$

for some constant $M=M_{\omega}$.
The classical modulii of continuity $\omega(t)=t^{\alpha}$ where $0<\alpha \leq 1$ satisfy the (A) condition.

Lemma

Let $\varphi \in L^{p}\left(\mathbb{R}^{n}\right)$ for some $1 \leq p \leq \infty$. Assume

$$
\begin{equation*}
\left|\varphi(t)-\varphi\left(x^{0}\right)\right| \leq \omega\left(\left|t-x^{0}\right|\right), \quad t \in \mathbb{R}^{n} \tag{16}
\end{equation*}
$$

for some $x^{0} \in \mathbb{R}^{n}$ and some modulus of continuity ω which satisfies condition (A). Then the harmonic extension $g=P[\varphi]$ of φ satisfies the following estimate:

$$
\begin{equation*}
\left|\frac{\partial g}{\partial x_{j}}\left(x^{0}, y\right)\right| \leq C(n, \omega) \frac{\omega(y)}{y}, \quad 0<y<+\infty, \quad 1 \leq j \leq n \tag{17}
\end{equation*}
$$

Proof of the lemma

Proof.

For all $(x, y) \in \mathbb{H}^{n+1}$ and all $j=1, \ldots, n$ we have

$$
\begin{aligned}
\frac{\partial g}{\partial x_{j}}(x, y) & =c_{n} \int_{\mathbb{R}^{n}} \varphi(t) \frac{\partial}{\partial x_{j}} \frac{y}{\left(y^{2}+|x-t|^{2}\right)^{(n+1) / 2}} d t \\
& =-(n+1) c_{n} \int_{\mathbb{R}^{n}} \varphi(t) y \frac{x_{j}-t_{j}}{\left(y^{2}+|x-t|^{2}\right)^{\frac{n+3}{2}}} d t \\
& =-(n+1) c_{n} \int_{\mathbb{R}^{n}}[\varphi(t)-\varphi(x)] y \frac{x_{j}-t_{j}}{\left(y^{2}+|x-t|^{2}\right)^{\frac{n+3}{2}}} d t .
\end{aligned}
$$

The last equality follows from the observation that $x_{j}-t_{j}$ is an odd function of the variable $x-t$.

Proof continued

Proof.

Therefore, using spherical coordinates centered at x^{0}, we obtain

$$
\begin{aligned}
\left|\frac{\partial g}{\partial x_{j}}\left(x^{0}, y\right)\right| & \leq(n+1) c_{n} y \int_{\mathbb{R}^{n}} \omega\left(\left|x^{0}-t\right|\right) \frac{\left|x^{0}-t\right|}{\left(y^{2}+\left|x^{0}-t\right|^{2}\right)^{\frac{n+3}{2}}} d t \\
& =n(n+1) c_{n} \omega_{n} y \int_{0}^{\infty} \omega(r) \frac{r^{n} d r}{\left(y^{2}+r^{2}\right)^{\frac{n+3}{2}}} \\
& =n(n+1) c_{n} \omega_{n} \frac{1}{y} \int_{0}^{\infty} \frac{\omega(y s) s^{n}}{\left(1+s^{2}\right)^{\frac{n+3}{2}}} d s
\end{aligned}
$$

Let us denote the above integral by $I(y)$.

Proof continued

Proof.

Then we have

$$
\begin{aligned}
I(y) & =\int_{0}^{1} \frac{\omega(y s) s^{n}}{\left(1+s^{2}\right)^{\frac{n+3}{2}}} d s+\int_{1}^{\infty} \frac{\omega(y s) s^{n}}{\left(1+s^{2}\right)^{\frac{n+3}{2}}} d s \\
& \leq \int_{0}^{1} \frac{\omega(y) s^{n}}{\left(1+s^{2}\right)^{\frac{n+3}{2}}} d s+\int_{1}^{\infty} \frac{\omega(y s)}{s^{3}} d s \\
& \leq(1+M) \omega(y) .
\end{aligned}
$$

and this proves desired estimate (17).
The proof shows that one can take
$C(n, \omega)=n(n+1) c_{n} \omega_{n}\left(1+M_{\omega}\right)$.

Systems of conjugate harmonic functions

We recall that a system of harmonic functions $u_{j}, 0 \leq j \leq n$, on \mathbb{H}^{n+1} is called a conjugate system if it satisfies the following system of equations

$$
\begin{equation*}
\sum_{j=0}^{n} \frac{\partial u_{j}}{\partial x_{j}}=0, \quad \frac{\partial u_{j}}{\partial x_{k}}=\frac{\partial u_{k}}{\partial x_{j}} \tag{18}
\end{equation*}
$$

where $x_{0}=y$.
When $n=2$ this reduces to the classical CR equations.

Systems of conjugate harmonic functions

We recall that a system of harmonic functions $u_{j}, 0 \leq j \leq n$, on \mathbb{H}^{n+1} is called a conjugate system if it satisfies the following system of equations

$$
\begin{equation*}
\sum_{j=0}^{n} \frac{\partial u_{j}}{\partial x_{j}}=0, \quad \frac{\partial u_{j}}{\partial x_{k}}=\frac{\partial u_{k}}{\partial x_{j}} \tag{18}
\end{equation*}
$$

where $x_{0}=y$.
When $n=2$ this reduces to the classical CR equations.
Given a function $f=f\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ harmonic in \mathbb{H}^{n+1} one gets a conjugate system by setting $u_{j}=\partial f / \partial x_{j}, 0 \leq j \leq n$.
The above system allows one to infer estimates of
$\partial u_{0} / \partial x_{0}=\partial u_{0} / \partial y$ from the estimates of $\partial u_{j} / \partial x_{j}$ for $1 \leq j \leq n$, this is how one proves the following proposition.

Conjugate systems and vertical derivatives

Proposition

Let ω be a modulus of continuity, $E \subset \mathbb{R}^{n} \cong \partial \mathbb{H}^{n+1}$ and let f_{j}, $0 \leq j \leq n$, be a system of conjugate functions on \mathbb{H}^{n+1}. Assume

$$
\left|\frac{\partial f_{j}}{\partial x_{j}}(x, y)\right| \leq \frac{\omega(y)}{y} \quad x \in E, \quad y>0, \quad 1 \leq j \leq n
$$

Then we have

$$
\left|\frac{\partial f_{0}}{\partial y}(x, y)\right| \leq n \frac{\omega(y)}{y}, \quad x \in E, \quad y>0 .
$$

Main result

Let $R_{j}, 1 \leq j \leq n$, be the Riesz operators. These operators are bounded linear operators on $L^{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\infty$.

Theorem

Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$ for some $1<p<\infty$ and set $f_{j}=R_{j} f$ for $1 \leq j \leq n$. Let $u=P[f]$ be the harmonic extension of f to the upper half space \mathbb{H}^{n+1}. Let ω be a modulus of continuity satisfying condition (A) and let E be a subset of $\mathbb{R}^{n} \cong \partial \mathbb{H}^{n+1}$. Assume

$$
\begin{equation*}
\left|f_{j}(t)-f_{j}(x)\right| \leq \omega(|t-x|), \quad x \in E, \quad t \in \mathbb{R}^{n}, \quad 1 \leq j \leq n \tag{19}
\end{equation*}
$$

Then there is a constant $C=C(n)$ such that

$$
\begin{equation*}
\left|\frac{\partial u}{\partial y}(x, y)\right| \leq C(n) \frac{\omega(y)}{y}, \quad y>0, \quad x \in E \tag{20}
\end{equation*}
$$

Thank you for your attention!

