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Introduction Schrödinger operators
Lieb-Thirring inequalities

Schrödinger operators

Consider HV := −∆+ V in Hilbert space L2(Rd) where d ∈ N arbitrary
dimension. Acts as (HV ψ)(x) = −∆ψ(x) + V (x)ψ(x).
We assume that V is sufficiently regular (e.g. piecewise continuous).

▶ If V = 0 (free Laplacian), then σ(H0) = σess(H0) = [0,∞).

▶ We assume that lim|x|→∞ V (x) = 0. Then V (H0 − i)−1 is compact,
hence

σess(HV ) = σess(H0) = [0,∞).

▶ Discrete spectrum (isolated eigenvalues of finite algebraic multiplicities) is

σdis(HV ) = σ(HV )\[0,∞).

Accumulation points of discrete eigenvalues lie in σess(HV ) = [0,∞).

▶ If V real-valued (HV selfadjoint), then σdis(HV ) ⊂ (−∞, 0). Only
possible accumulation point is 0.

▶ Questions: Where can eigenvalues lie? Modulus of eigenvalues? Distance
to essential spectrum? If there are infinitely many eigenvalues, where do
they accumulate and how fast?
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Lieb-Thirring inequalities (1970s+)

Let 
p ≥ d

2
, if d ≥ 3,

p > 1, if d = 2,

p ≥ 1, if d = 1.

Lieb-Thirring inequalities: There exists Cd,p > 0 such that for all for all
real-valued V ∈ Lp(Rd),∑

λ∈σdis(HV )

|λ|p−
d
2 ≤ Cd,p∥V ∥pLp = Cd,p

∫
|V (x)|p dx.

This also gives individual eigenvalue bound |λ|p−
d
2 ≤ Cd,p∥V ∥pLp .

Question: What happens in non-selfadjoint case, i.e. for non-real V ∈ Lp(Rd)?

Remark: In principle, non-real eigenvalues can accumulate to a non-zero point
of the essential spectrum.

λ
Re

Im
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Wild behaviour
Laptev-Safronov conjecture
Possible generalisations of the LT inequalities

Wild behaviour in non-selfadjoint case

Theorem (Bögli 2017, Bögli-Cuenin 2023): Let p > d+1
2

and ε > 0.

Then ∃V ∈ L∞(Rd) ∩ Lp(Rd) with max{∥V ∥L∞ , ∥V ∥Lp} < ε and
σdis(HV ) accumulates at every point of [0,∞).

Re

Im

Remark: So for p > d+1
2

we can have an arbitrarily small ∥V ∥Lp but
eigenvalues with arbitrarily large modulus.

Remark: If we can find a sequence (Vn)n∈N ⊂ Lp(Rd) with
limn→∞ ∥Vn∥Lp = 0 and λn ∈ σdis(HVn) with limn→∞ λn = λ ∈ (0,∞), then
take subsequence such that

∑
n ∥Vn∥Lp <∞ and consider potential

V (x) =
∑
n

Vn(x− tnx0)

where x0 ∈ Rn\{0} and tn > 0 sufficiently large (constructed by induction)
⇝ σdis(HV ) accumulates to λ. For above wild behaviour, one needs scaling.
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Remark on the sharpness of p > d+1
2

▶ d = 1: Abramov-Aslanyan-Davies (2001): If V ∈ L1(R), then

∀λ ∈ σdis (HV ) : |λ|
1
2 ≤ 1

2
∥V ∥L1 .

▶ d ≥ 2: Conjecture by Laptev-Safronov (2009):

For p ∈
(
d
2
, d
]
there exists Cd,p > 0 such that if V ∈ Lp(Rd), then

∀λ ∈ σdis (HV ) : |λ|p−
d
2 ≤ Cd,p∥V ∥pLp .

∗ Proved for p ∈
(

d
2
, d+1

2

]
(Frank, 2011).

∗ Disproved for p > d+1
2

(Bögli-Cuenin 2023).

∗ Embedded eigenvalues λ ∈ [0,∞): Also satisfy estimate for p ∈
(

d
2
, d+1

2

]
but not for p > d+1

2
(Frank-Simon, 2016). For p > d+1

2
, they found

(Vn)n∈N ⊂ Lp(Rd) with limn→∞ ∥Vn∥Lp = 0 and λ = 1 is an embedded

eigenvalue of each −∆+ Vn.
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Individual eigenvalue bounds and Laptev-Safronov conjecture

In the following always d ≥ 2.

▶ Frank (2011): Laptev-Safronov conjecture holds for p ∈
(
d
2
, d+1

2

]
, i.e.

|λ|p−
d
2 ≤ Cd,p∥V ∥pLp .

Re

Im
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d
2
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2

]
, i.e.

|λ|p−
d
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▶ Frank (2018): For p > d+1
2

,

dist(λ, [0,∞))p−
d+1
2 |λ|

1
2 ≤ Cd,p∥V ∥pLp .

Note: LHS reduces to |λ|p−
d
2 in the selfadjoint case (when λ ∈ (−∞, 0)).

Re

Im
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2 |λ|

1
2 ≤ Cd,p∥V ∥pLp .

Note: LHS reduces to |λ|p−
d
2 in the selfadjoint case (when λ ∈ (−∞, 0)).

▶ Remark: For V ∈ L∞(Rd), since H0 = −∆ selfadjoint we know

∀λ ∈ σ(H0 + V ) : dist(λ, σ(H0)) ≤ ∥V ∥ = ∥V ∥L∞ .

Re

Im
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Proof idea: Birman–Schwinger principle

The Birman–Schwinger principle says that λ ∈ C\[0,∞) is an eigenvalue of
−∆+ V if and only if −1 is an eigenvalue of√

|V | (−∆− λ)−1 V√
|V |

.

The latter implies, for p, q, q′ ∈ [1,∞] such that 1
q
+ 1

q′ = 1 and 1
q
− 1

q′ = 1
p
:

1 ≤

∥∥∥∥∥√|V | (−∆− λ)−1 V√
|V |

∥∥∥∥∥
≤
∥∥∥√|V |

∥∥∥
Lq′→L2

∥∥(−∆− λ)−1
∥∥
Lq→Lq′

∥∥∥∥∥ V√
|V |

∥∥∥∥∥
L2→Lq

= ∥V ∥Lp

∥∥(−∆− λ)−1
∥∥
Lq→Lq′ .

By Kenig–Ruiz–Sogge (1987) (rescaled version by Frank):∥∥(−∆− λ)−1
∥∥
Lq→Lq′ ≤ Cd,q |λ|−

d+2
d

+ d
q

under assumptions on q, d which translate to p ∈
(
d
2
, d+1

2

]
.
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Counterexample for p > d+1
2 (Bögli-Cuenin 2023)

Let H = −∆+ V0 for a real-valued V0 ∈ Lp(Rd).

Theorem: Take z ∈ C with Im(z) > 0, and K ⊂ Rd compact. Then there
exists V such that z is an eigenvalue of H + V and

∀x ∈ Rd : |V (x)| ≤ χK(x)

∥χK Im ((H − z)−1)χK∥ .

Sabine Bögli (Durham) Schrödinger operators
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exists V such that z is an eigenvalue of H + V and

∀x ∈ Rd : |V (x)| ≤ χK(x)

∥χK Im ((H − z)−1)χK∥ .

Proof idea: Assume there exist µ ̸= 0 and f ̸≡ 0 with

χ(H − z)−1χf = µf.

Let g := (H − z)−1χf . Then

(H − z)g = χf = f =
1

µ
χg.

Now take

V = − 1

µ
χ.

BUT don’t know whether |V (x)| small, i.e. |µ| large!
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Proof: T := χ Im
(
(H − z)−1

)
χ is compact, positive operator, hence

Specrad(T ) = ∥T∥. Thus there exists real-valued f with Tf = ∥T∥f .
Let g := (H − z)−1χf . Then Im

(
(H − z)−1

)
χf = Im(g) and hence

(H − z)g = χf = f =
1

∥T∥Tf =
1

∥T∥χIm(g).

Now take

V (x) = − 1

∥T∥χ(x)
Im(g(x))

g(x)
.
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exists V such that z is an eigenvalue of H + V and

∀x ∈ Rd : |V (x)| ≤ χK(x)
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Corollary: Let λ ∈ σ(H) and ψ ∈ D(H) with ∥ψ∥L2 = 1 and Hψ = λψ.
Assume that K ⊂ Rd compact is chosen so large that(∫

Rd\K
|ψ(x)|2 dx

)1/2

≤ 1/4.

Then, for any ε > 0, there exists Vε ∈ L∞(Rd) such that zε = λ+ iε is an
eigenvalue of H + Vε and

∀x ∈ Rd : |Vε(x)| ≤
χK(x)

∥χK Im ((H − zε)−1)χK∥ ≤ 4εχK(x).

Note: ∥Vε∥Lp ≤ 4ε∥χK∥Lp can be made arbitrarily small.

⇝ One can perturb the embedded eigenvalue λ = 1 of the Frank–Simon
example, thus disproving the Laptev-Safronov conjecture |z|p−d/2 ≤ C∥V ∥pLp .
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Generalised Lieb–Thirring inequalities for non-selfadjoint case

Theorem (Frank-Laptev-Lieb-Seiringer 2006): For p ≥ d
2
+ 1 there exists

Cd,p > 0 such that, for all V ∈ Lp(Rd), the eigenvalues of HV satisfy∑
Reλj<0

|λj |p−
d
2 ≤ Cd,p∥V ∥pLp

(eigenvalues in left half-plane) and, for all t > 0,∑
|Imλj |≥tReλj

|λj |p−
d
2 ≤ Cd,p

(
1 + t−1)p ∥V ∥pLp

(eigenvalues outside sector with semi-angle arctan t).

Theorem (Demuth-Hansmann-Katriel 2009): For p ≥ d
2
+ 1 and ε > 0 there

exists Cd,p,ε > 0 such that for all V ∈ Lp(Rd)∑
λ∈σdis(HV )

dist(λ, [0,∞))p+ε

|λ| d2+ε
≤ Cd,p,ε∥V ∥pLp .

Note: LHS reduces to
∑

λ∈σdis(HV ) |λ|
p− d

2 in selfadjoint case, as in LT ineq.
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Open problem

Open problem (Demuth-Hansmann-Katriel 2013):
Prove the existence of Cd,p > 0 such that for all V ∈ Lp(Rd)∑

λ∈σdis(HV )

dist(λ, [0,∞))p

|λ| d2
≤ Cd,p∥V ∥pLp ,

or find a counterexample.

Theorem (Bögli-Štampach 2021): Let d = 1 and p ≥ 1. Then

lim
t→+∞

 1

∥itχ[−1,1]∥pLp

∑
λ∈σdis

(
− d2

dx2 +itχ[−1,1]

)
dist(λ, [0,∞))p

|λ| 12

 = ∞.

Theorem (Bögli-Petpradittha-Štampach 2024+): This works also in higher
dimensions, with potential itχB1(0).
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Theorem (Bögli-Petpradittha-Štampach 2024+): This works also in higher
dimensions, with potential itχB1(0).
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New Lieb–Thirring type inequalities

Theorem (Bögli 2023): Let d ∈ N and p ≥ d
2
+ 1. Let f : [0,∞) → (0,∞) be a

continuous, non-increasing function. If
∫∞
0
f(s) ds <∞, then there exists

Cd,p,f > 0 such that, for any V ∈ Lp(Rd),∑
λ∈σdis(−∆+V )

dist(λ, [0,∞))p

|λ|d/2
f

(
− log

(dist(λ, [0,∞))

|λ|

))
≤ Cd,p,f∥V ∥pLp

where Cd,p,f = Cd,p ·
(∫∞

0
f(s) ds+ f(0)

)
with Cd,p > 0 independent of f .

Remark: Demuth-Hansmann-Katriel result corresponds to f(s) = exp(−εs).
There are L1-functions with a slower decay at infinity, such as

f(s) ∼ 1

s1+ε
, f(s) ∼ 1

s log(s)1+ε
, f(s) ∼ 1

s log(s) log(log(s))1+ε
, . . . .

Theorem (Bögli 2023, Bögli-Petpradittha-Štampach 2024+):
Let p ≥ 1. Let f : [0,∞) → (0,∞) be a continuous, non-increasing function
with

∫∞
0
f(s) ds = ∞. Then

sup
V ∈Lp(R)

∑
λ∈σdis(−∆+V )

dist(λ,[0,∞))p

|λ|1/2 f
(
− log

(
dist(λ,[0,∞))

|λ|

))
∥V ∥pLp

= ∞.
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Sabine Bögli (Durham) Schrödinger operators



Introduction and Lieb-Thirring inequalities
Non-selfadjoint case

Wild behaviour
Laptev-Safronov conjecture
Possible generalisations of the LT inequalities

New Lieb–Thirring type inequalities
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