On the discrete eigenvalues of Schrödinger operators with complex potentials

Sabine Bögli (Durham)

Based on joint work with Jean-Claude Cuenin (Loughborough), Sukrid Petpradittha (Durham) & František Štampach (Prague)

Seminar on Analysis, Differential Eqns and Math. Physics, 05/09/2024

Schrödinger operators

Consider $H_V:=-\Delta+V$ in Hilbert space $L^2(\mathbb{R}^d)$ where $d\in\mathbb{N}$ arbitrary dimension. Acts as $(H_V \psi)(x) = -\Delta \psi(x) + V(x)\psi(x)$. We assume that V is sufficiently regular (e.g. piecewise continuous).

Schrödinger operators

Consider $H_V:=-\Delta+V$ in Hilbert space $L^2(\mathbb{R}^d)$ where $d\in\mathbb{N}$ arbitrary dimension. Acts as $(H_V \psi)(x) = -\Delta \psi(x) + V(x)\psi(x)$. We assume that V is sufficiently regular (e.g. piecewise continuous).

 \blacktriangleright If $V = 0$ (free Laplacian), then $\sigma(H_0) = \sigma_{\rm ess}(H_0) = [0, \infty)$.

▶ We assume that $\lim_{|x|\to\infty} V(x) = 0$. Then $V(H_0 - i)^{-1}$ is compact, hence

$$
\sigma_{\rm ess}(H_V)=\sigma_{\rm ess}(H_0)=[0,\infty).
$$

 \triangleright Discrete spectrum (isolated eigenvalues of finite algebraic multiplicities) is

$$
\sigma_{\text{dis}}(H_V) = \sigma(H_V) \setminus [0, \infty).
$$

Accumulation points of discrete eigenvalues lie in $\sigma_{\rm ess}(H_V) = [0, \infty)$.

Schrödinger operators

Consider $H_V:=-\Delta+V$ in Hilbert space $L^2(\mathbb{R}^d)$ where $d\in\mathbb{N}$ arbitrary dimension. Acts as $(H_V \psi)(x) = -\Delta \psi(x) + V(x)\psi(x)$. We assume that V is sufficiently regular (e.g. piecewise continuous).

- \blacktriangleright If $V = 0$ (free Laplacian), then $\sigma(H_0) = \sigma_{\rm ess}(H_0) = [0, \infty)$.
- ▶ We assume that $\lim_{|x|\to\infty} V(x) = 0$. Then $V(H_0 i)^{-1}$ is compact, hence

$$
\sigma_{\rm ess}(H_V)=\sigma_{\rm ess}(H_0)=[0,\infty).
$$

 \triangleright Discrete spectrum (isolated eigenvalues of finite algebraic multiplicities) is

$$
\sigma_{\text{dis}}(H_V) = \sigma(H_V) \setminus [0, \infty).
$$

Accumulation points of discrete eigenvalues lie in $\sigma_{\rm ess}(H_V) = [0, \infty)$.

- ▶ If V real-valued (H_V selfadjoint), then $\sigma_{\text{dis}}(H_V) \subset (-\infty, 0)$. Only possible accumulation point is 0.
- ▶ Questions: Where can eigenvalues lie? Modulus of eigenvalues? Distance to essential spectrum? If there are infinitely many eigenvalues, where do they accumulate and how fast?

Lieb-Thirring inequalities (1970s+)

Let

J \mathbf{I} $p \geq \frac{d}{2}$, if $d \geq 3$, $p > 1$, if $d = 2$, $p \geq 1$, if $d = 1$.

Lieb-Thirring inequalities: There exists $C_{d,p} > 0$ such that for all for all real-valued $V \in L^p(\mathbb{R}^d)$,

$$
\sum_{\lambda \in \sigma_{\text{dis}}(H_V)} |\lambda|^{p-\frac{d}{2}} \leq C_{d,p} ||V||_{L^p}^p = C_{d,p} \int |V(x)|^p dx.
$$

This also gives individual eigenvalue bound $|\lambda|^{p-\frac{d}{2}}\leq C_{d,p}\|V\|_{L^p}^p$.

Lieb-Thirring inequalities (1970s+)

Let

J \mathbf{I} $p \geq \frac{d}{2}$, if $d \geq 3$, $p > 1$, if $d = 2$, $p \geq 1$, if $d = 1$.

Lieb-Thirring inequalities: There exists $C_{d,p} > 0$ such that for all for all real-valued $V \in L^p(\mathbb{R}^d)$,

$$
\sum_{\lambda \in \sigma_{\text{dis}}(H_V)} |\lambda|^{p-\frac{d}{2}} \leq C_{d,p} ||V||_{L^p}^p = C_{d,p} \int |V(x)|^p dx.
$$

This also gives individual eigenvalue bound $|\lambda|^{p-\frac{d}{2}}\leq C_{d,p}\|V\|_{L^p}^p$.

Question: What happens in non-selfadjoint case, i.e. for non-real $V\in L^p({\mathbb R}^d)?$

Remark: In principle, non-real eigenvalues can accumulate to a non-zero point of the essential spectrum.

Wild behaviour in non-selfadjoint case

Theorem (Bögli 2017, Bögli-Cuenin 2023): Let $p > \frac{d+1}{2}$ and $\varepsilon > 0$. Then $\exists V \in L^{\infty}(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$ with $\max\{||V||_{L^{\infty}}, ||V||_{L^p}\} < \varepsilon$ and $\sigma_{\text{dis}}(H_V)$ accumulates at every point of $[0,\infty)$.

Wild behaviour in non-selfadjoint case

Theorem (Bögli 2017, Bögli-Cuenin 2023): Let $p > \frac{d+1}{2}$ and $\varepsilon > 0$. Then $\exists V \in L^{\infty}(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$ with $\max\{||V||_{L^{\infty}}, ||V||_{L^p}\} < \varepsilon$ and $\sigma_{\text{dis}}(H_V)$ accumulates at every point of $[0,\infty)$.

Remark: So for $p>\frac{d+1}{2}$ we can have an arbitrarily small $\|V\|_{L^p}$ but eigenvalues with arbitrarily large modulus.

Wild behaviour in non-selfadjoint case

Theorem (Bögli 2017, Bögli-Cuenin 2023): Let $p > \frac{d+1}{2}$ and $\varepsilon > 0$. Then $\exists V \in L^{\infty}(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$ with $\max\{||V||_{L^{\infty}}, ||V||_{L^p}\} < \varepsilon$ and $\sigma_{\text{dis}}(H_V)$ accumulates at every point of $[0,\infty)$.

Remark: So for $p>\frac{d+1}{2}$ we can have an arbitrarily small $\|V\|_{L^p}$ but eigenvalues with arbitrarily large modulus.

Remark: If we can find a sequence $(V_n)_{n\in\mathbb{N}}\subset L^p(\mathbb{R}^d)$ with $\lim_{n\to\infty} ||V_n||_{L^p} = 0$ and $\lambda_n \in \sigma_{\text{dis}}(H_{V_n})$ with $\lim_{n\to\infty} \lambda_n = \lambda \in (0,\infty)$, then take subsequence such that $\sum_n \|V_n\|_{L^p}<\infty$ and consider potential

$$
V(x) = \sum_{n} V_n(x - t_n x_0)
$$

where $x_0 \in \mathbb{R}^n \backslash \{0\}$ and $t_n > 0$ sufficiently large (constructed by induction) $\rightsquigarrow \sigma_{\text{dis}}(H_V)$ accumulates to λ . For above wild behaviour, one needs scaling. Remark on the sharpness of $p > \frac{d+1}{2}$

▶ $d = 1$: Abramov-Aslanyan-Davies (2001): If $V \in L^1(\mathbb{R})$, then

$$
\forall \lambda \in \sigma_{\text{dis}}(H_V): \quad |\lambda|^{\frac{1}{2}} \leq \frac{1}{2} ||V||_{L^1}.
$$

Remark on the sharpness of $p > \frac{d+1}{2}$

▶ $d = 1$: Abramov-Aslanyan-Davies (2001): If $V \in L^1(\mathbb{R})$, then

$$
\forall \lambda \in \sigma_{\text{dis}}(H_V): \quad |\lambda|^{\frac{1}{2}} \leq \frac{1}{2} ||V||_{L^1}.
$$

 $\blacktriangleright d \geq 2$: Conjecture by Laptev-Safronov (2009): For $p\in\left(\frac{d}{2},d\right]$ there exists $C_{d,p}>0$ such that if $V\in L^p(\mathbb{R}^d)$, then

$$
\forall \lambda \in \sigma_{\text{dis}}\left(H_V\right): \quad |\lambda|^{p-\frac{d}{2}} \leq C_{d,p} \|V\|_{L^p}^p.
$$

Remark on the sharpness of $p > \frac{d+1}{2}$

▶ $d = 1$: Abramov-Aslanyan-Davies (2001): If $V \in L^1(\mathbb{R})$, then

$$
\forall \lambda \in \sigma_{\text{dis}}(H_V): \quad |\lambda|^{\frac{1}{2}} \leq \frac{1}{2} ||V||_{L^1}.
$$

 \blacktriangleright $d > 2$: Conjecture by Laptev-Safronov (2009): For $p\in\left(\frac{d}{2},d\right]$ there exists $C_{d,p}>0$ such that if $V\in L^p(\mathbb{R}^d)$, then

$$
\forall \lambda \in \sigma_{\text{dis}}\left(H_V\right): \quad |\lambda|^{p-\frac{d}{2}} \leq C_{d,p} \|V\|_{L^p}^p.
$$

* Proved for
$$
p \in \left(\frac{d}{2}, \frac{d+1}{2}\right]
$$
 (Frank, 2011).

- ∗ Disproved for $p > \frac{d+1}{2}$ (Bögli-Cuenin 2023).
- $*$ Embedded eigenvalues $\lambda \in [0,\infty)$: Also satisfy estimate for $p \in \left(\frac{d}{2},\frac{d+1}{2}\right]$ but not for $p>\frac{d+1}{2}$ (Frank-Simon, 2016). For $p>\frac{d+1}{2}$, they found $(V_n)_{n\in\mathbb{N}}\subset L^p(\mathbb{R}^{\tilde{d}})$ with $\lim_{n\to\infty}||V_n||_{L^p}=0$ and $\lambda=1$ is an embedded eigenvalue of each $-\Delta + V_n$.

Individual eigenvalue bounds and Laptev-Safronov conjecture

In the following always $d > 2$.

▶ Frank (2011): Laptev-Safronov conjecture holds for $p \in \left(\frac{d}{2}, \frac{d+1}{2}\right]$, i.e.

$$
|\lambda|^{p-\frac{d}{2}} \leq C_{d,p} ||V||_{L^p}^p.
$$

Individual eigenvalue bounds and Laptev-Safronov conjecture

In the following always $d > 2$.

▶ Frank (2011): Laptev-Safronov conjecture holds for $p \in \left(\frac{d}{2}, \frac{d+1}{2}\right]$, i.e.

$$
|\lambda|^{p-\frac{d}{2}} \leq C_{d,p} ||V||_{L^p}^p.
$$

▶ Frank (2018): For $p > \frac{d+1}{2}$, dist $(\lambda, [0, \infty))^{p - \frac{d+1}{2}} |\lambda|^{\frac{1}{2}} \leq C_{d,p} ||V||_{L^p}^p$.

Note: LHS reduces to $|\lambda|^{p-\frac{d}{2}}$ in the selfadjoint case (when $\lambda \in (-\infty,0)).$

Individual eigenvalue bounds and Laptev-Safronov conjecture

In the following always $d > 2$.

▶ Frank (2011): Laptev-Safronov conjecture holds for $p \in \left(\frac{d}{2}, \frac{d+1}{2}\right]$, i.e.

$$
|\lambda|^{p-\frac{d}{2}} \leq C_{d,p} ||V||_{L^p}^p.
$$

▶ Frank (2018): For $p > \frac{d+1}{2}$, dist $(\lambda, [0, \infty))^{p - \frac{d+1}{2}} |\lambda|^{\frac{1}{2}} \leq C_{d,p} ||V||_{L^p}^p$.

Note: LHS reduces to $|\lambda|^{p-\frac{d}{2}}$ in the selfadjoint case (when $\lambda \in (-\infty,0)).$ ▶ Remark: For $V \in L^{\infty}(\mathbb{R}^d)$, since $H_0 = -\Delta$ selfadjoint we know

Proof idea: Birman–Schwinger principle

The Birman–Schwinger principle says that $\lambda \in \mathbb{C} \backslash [0, \infty)$ is an eigenvalue of $-\Delta + V$ if and only if -1 is an eigenvalue of

$$
\sqrt{|V|}\left(-\Delta-\lambda\right)^{-1}\frac{V}{\sqrt{|V|}}.
$$

The latter implies, for $p,q,q'\in[1,\infty]$ such that $\frac{1}{q}+\frac{1}{q'}=1$ and $\frac{1}{q}-\frac{1}{q'}=\frac{1}{p}$:

$$
1 \leq \left\| \sqrt{|V|} \left(-\Delta - \lambda \right)^{-1} \frac{V}{\sqrt{|V|}} \right\|
$$

\n
$$
\leq \left\| \sqrt{|V|} \right\|_{L^{q'} \to L^2} \| \left(-\Delta - \lambda \right)^{-1} \|_{L^{q} \to L^{q'}} \left\| \frac{V}{\sqrt{|V|}} \right\|_{L^2 \to L^q}
$$

\n
$$
= \|V\|_{L^p} \| \left(-\Delta - \lambda \right)^{-1} \|_{L^q \to L^{q'}}.
$$

By Kenig–Ruiz–Sogge (1987) (rescaled version by Frank):

$$
\left\| \left(-\Delta - \lambda \right)^{-1} \right\|_{L^q \to L^{q'}} \leq C_{d,q} \left| \lambda \right|^{-\frac{d+2}{d} + \frac{d}{q}}
$$

under assumptions on q,d which translate to $p\in\big(\frac{d}{2},\frac{d+1}{2}\big].$

Let $H = -\Delta + V_0$ for a real-valued $V_0 \in L^p(\mathbb{R}^d)$.

Theorem: Take $z\in\mathbb{C}$ with $\mathrm{Im}(z)>0$, and $K\subset\mathbb{R}^d$ compact. Then there exists V such that z is an eigenvalue of $H + V$ and

$$
\forall x \in \mathbb{R}^d : \quad |V(x)| \le \frac{\chi_K(x)}{\|\chi_K \operatorname{Im}\left((H-z)^{-1}\right)\chi_K\|}.
$$

Let $H = -\Delta + V_0$ for a real-valued $V_0 \in L^p(\mathbb{R}^d)$.

Theorem: Take $z\in\mathbb{C}$ with $\mathrm{Im}(z)>0$, and $K\subset\mathbb{R}^d$ compact. Then there exists V such that z is an eigenvalue of $H + V$ and

$$
\forall x \in \mathbb{R}^d : \quad |V(x)| \le \frac{\chi_K(x)}{\|\chi_K \operatorname{Im}\left((H-z)^{-1}\right)\chi_K\|}.
$$

Proof idea: Assume there exist $\mu \neq 0$ and $f \neq 0$ with

$$
\chi(H-z)^{-1}\chi f = \mu f.
$$

Let $g := (H - z)^{-1} \chi f$. Then

$$
(H - z)g = \chi f = f = \frac{1}{\mu} \chi g.
$$

Now take

$$
V = -\frac{1}{\mu}\chi.
$$

BUT don't know whether $|V(x)|$ small, i.e. $|\mu|$ large!

Let $H = -\Delta + V_0$ for a real-valued $V_0 \in L^p(\mathbb{R}^d)$.

Theorem: Take $z\in\mathbb{C}$ with $\mathrm{Im}(z)>0$, and $K\subset\mathbb{R}^d$ compact. Then there exists V such that z is an eigenvalue of $H + V$ and

$$
\forall x \in \mathbb{R}^d : \quad |V(x)| \le \frac{\chi_K(x)}{\|\chi_K \operatorname{Im}\left((H-z)^{-1}\right)\chi_K\|}.
$$

Let $H = -\Delta + V_0$ for a real-valued $V_0 \in L^p(\mathbb{R}^d)$.

Theorem: Take $z\in\mathbb{C}$ with $\mathrm{Im}(z)>0$, and $K\subset\mathbb{R}^d$ compact. Then there exists V such that z is an eigenvalue of $H + V$ and

$$
\forall x \in \mathbb{R}^d : \quad |V(x)| \le \frac{\chi_K(x)}{\|\chi_K \operatorname{Im}\left((H-z)^{-1}\right)\chi_K\|}.
$$

Proof: $T:=\chi\operatorname{Im}\left((H-z)^{-1}\right)\chi$ is compact, positive operator, hence Specrad(T) = $||T||$. Thus there exists real-valued f with $T f = ||T|| f$. Let $g:=(H-z)^{-1}\chi f.$ Then $\mathrm{Im}\left((H-z)^{-1}\right)\chi f=\mathrm{Im}(g)$ and hence

$$
(H - z)g = \chi f = f = \frac{1}{\|T\|} Tf = \frac{1}{\|T\|} \chi \text{Im}(g).
$$

Now take

$$
V(x) = -\frac{1}{\|T\|} \chi(x) \frac{\text{Im}(g(x))}{g(x)}.
$$

Let $H = -\Delta + V_0$ for a real-valued $V_0 \in L^p(\mathbb{R}^d)$.

Theorem: Take $z\in\mathbb{C}$ with $\mathrm{Im}(z)>0$, and $K\subset\mathbb{R}^d$ compact. Then there exists V such that z is an eigenvalue of $H + V$ and

$$
\forall x \in \mathbb{R}^d : \quad |V(x)| \le \frac{\chi_K(x)}{\|\chi_K \operatorname{Im}\left((H-z)^{-1}\right)\chi_K\|}.
$$

Let $H = -\Delta + V_0$ for a real-valued $V_0 \in L^p(\mathbb{R}^d)$.

Theorem: Take $z\in\mathbb{C}$ with $\mathrm{Im}(z)>0$, and $K\subset\mathbb{R}^d$ compact. Then there exists V such that z is an eigenvalue of $H + V$ and

$$
\forall x \in \mathbb{R}^d : \quad |V(x)| \le \frac{\chi_K(x)}{\|\chi_K \operatorname{Im}\left((H-z)^{-1}\right)\chi_K\|}.
$$

Corollary: Let $\lambda \in \sigma(H)$ and $\psi \in \mathcal{D}(H)$ with $\|\psi\|_{L^2} = 1$ and $H\psi = \lambda \psi$. Assume that $K \subset \mathbb{R}^d$ compact is chosen so large that

$$
\left(\int_{\mathbb{R}^d\setminus K} |\psi(x)|^2 \,\mathrm{d}x\right)^{1/2} \le 1/4.
$$

Then, for any $\varepsilon>0$, there exists $V_\varepsilon\in L^\infty(\mathbb{R}^d)$ such that $z_\varepsilon=\lambda+i\varepsilon$ is an eigenvalue of $H + V_{\varepsilon}$ and

$$
\forall x \in \mathbb{R}^d : \quad |V_{\varepsilon}(x)| \leq \frac{\chi_K(x)}{\|\chi_K \operatorname{Im}\left((H - z_{\varepsilon})^{-1}\right)\chi_K\|} \leq 4\varepsilon \chi_K(x).
$$

Note: $||V_{\varepsilon}||_{L^p} \leq 4\varepsilon ||\chi_K||_{L^p}$ can be made arbitrarily small.

 \rightarrow One can perturb the embedded eigenvalue $\lambda = 1$ of the Frank–Simon example, thus disproving the Laptev-Safronov conjecture $|z|^{p-d/2} \leq C \|V\|_{L^p}^p$.

Generalised Lieb–Thirring inequalities for non-selfadjoint case

Theorem (Frank-Laptev-Lieb-Seiringer 2006): For $p \geq \frac{d}{2}+1$ there exists $C_{d,p}>0$ such that, for all $V\in L^p(\mathbb{R}^d)$, the eigenvalues of H_V satisfy

$$
\sum_{\mathrm{Re}\lambda_j<0}|\lambda_j|^{p-\frac{d}{2}}\leq C_{d,p}\|V\|_{L^p}^p
$$

(eigenvalues in left half-plane) and, for all $t > 0$,

$$
\sum_{|\text{Im}\lambda_j|\geq t\text{ Re}\lambda_j} |\lambda_j|^{p-\frac{d}{2}} \leq C_{d,p} \left(1+t^{-1}\right)^p \|V\|_{L^p}^p
$$

(eigenvalues outside sector with semi-angle $\arctan t$).

Generalised Lieb–Thirring inequalities for non-selfadjoint case

Theorem (Frank-Laptev-Lieb-Seiringer 2006): For $p \geq \frac{d}{2}+1$ there exists $C_{d,p}>0$ such that, for all $V\in L^p(\mathbb{R}^d)$, the eigenvalues of H_V satisfy

$$
\sum_{\mathrm{Re}\lambda_j<0}|\lambda_j|^{p-\frac{d}{2}}\leq C_{d,p}\|V\|_{L^p}^p
$$

(eigenvalues in left half-plane) and, for all $t > 0$,

$$
\sum_{|\text{Im}\lambda_j|\geq t\text{ Re}\lambda_j} |\lambda_j|^{p-\frac{d}{2}} \leq C_{d,p} \left(1+t^{-1}\right)^p \|V\|_{L^p}^p
$$

(eigenvalues outside sector with semi-angle $\arctan t$).

Theorem (Demuth-Hansmann-Katriel 2009): For $p\geq \frac{d}{2}+1$ and $\varepsilon>0$ there exists $C_{d,p,\varepsilon}>0$ such that for all $V\in L^p(\mathbb{R}^d)$

$$
\sum_{\lambda \in \sigma_{\text{dis}}(H_V)} \frac{\text{dist}(\lambda, [0, \infty))^{p+\varepsilon}}{|\lambda|^{\frac{d}{2}+\varepsilon}} \leq C_{d,p,\varepsilon} ||V||_{L^p}^p.
$$

Note: LHS reduces to $\sum_{\lambda \in \sigma_{\mathrm{dis}}(H_V)} |\lambda|^{p-\frac{d}{2}}$ in selfadjoint case, as in LT ineq.

Open problem

Open problem (Demuth-Hansmann-Katriel 2013):

Prove the existence of $C_{d,p}>0$ such that for all $V\in L^p(\mathbb{R}^d)$

$$
\sum_{\lambda \in \sigma_{\mathrm{dis}}(H_V)} \frac{\mathrm{dist}(\lambda,[0,\infty))^p}{|\lambda|^{\frac{d}{2}}} \leq C_{d,p} \|V\|_{L^p}^p,
$$

or find a counterexample.

Open problem

Open problem (Demuth-Hansmann-Katriel 2013): Prove the existence of $C_{d,p}>0$ such that for all $V\in L^p(\mathbb{R}^d)$

$$
\sum_{\lambda \in \sigma_{\text{dis}}(H_V)} \frac{\text{dist}(\lambda,[0,\infty))^p}{|\lambda|^{\frac{d}{2}}} \leq C_{d,p} ||V||_{L^p}^p,
$$

or find a counterexample.

Theorem (Bögli-Štampach 2021): Let $d = 1$ and $p \ge 1$. Then $\lim_{t\to+\infty}$ $\sqrt{ }$ $\frac{1}{\|\mathrm{i} t\chi_{[-1]}}$ $||$ it $\chi_{[-1,1]}||_{L^p}^p$ \sum $\lambda \in \sigma_{\text{dis}} \left(-\frac{d^2}{dx^2} + i t \chi_{[-1,1]} \right)$ dist $(\lambda, [0, \infty))^p$ $|\lambda|^{\frac{1}{2}}$ \setminus $=$ ∞ .

Open problem

Open problem (Demuth-Hansmann-Katriel 2013): Prove the existence of $C_{d,p}>0$ such that for all $V\in L^p(\mathbb{R}^d)$

$$
\sum_{\lambda \in \sigma_{\text{dis}}(H_V)} \frac{\text{dist}(\lambda,[0,\infty))^p}{|\lambda|^{\frac{d}{2}}} \leq C_{d,p} ||V||_{L^p}^p,
$$

or find a counterexample.

Theorem (Bögli-Štampach 2021): Let
$$
d = 1
$$
 and $p \ge 1$. Then
\n
$$
\lim_{t \to +\infty} \left(\frac{1}{\|\mathrm{i} t \chi_{[-1,1]}\|_{L^p}^p} \sum_{\lambda \in \sigma_{\text{dis}} \left(-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \mathrm{i} t \chi_{[-1,1]}\right)} \frac{\mathrm{dist}(\lambda, [0, \infty))^p}{|\lambda|^{\frac{1}{2}}} \right) = \infty.
$$

Theorem (Bögli-Petpradittha-Štampach 2024 $+$): This works also in higher dimensions, with potential $it\chi_{B_1(0)}$.

New Lieb–Thirring type inequalities

Theorem (Bögli 2023): Let $d \in \mathbb{N}$ and $p \geq \frac{d}{2} + 1$. Let $f : [0, \infty) \to (0, \infty)$ be a continuous, non-increasing function. If $\int_0^\infty \tilde{f}(s)\,\mathrm{d}s < \infty$, then there exists $C_{d,p,f} > 0$ such that, for any $V \in L^p(\mathbb{R}^d)$,

$$
\sum_{\lambda \in \sigma_{\text{dis}}(-\Delta + V)} \frac{\text{dist}(\lambda, [0, \infty))^p}{|\lambda|^{d/2}} f\left(-\log\left(\frac{\text{dist}(\lambda, [0, \infty))}{|\lambda|}\right)\right) \leq C_{d,p,f} ||V||_{L^p}^p
$$

where $C_{d,p,f}=C_{d,p}\cdot\left(\int_{0}^{\infty}f(s)\,\mathrm{d}s+f(0)\right)$ with $C_{d,p}>0$ independent of f .

New Lieb–Thirring type inequalities

Theorem (Bögli 2023): Let $d \in \mathbb{N}$ and $p \geq \frac{d}{2} + 1$. Let $f : [0, \infty) \to (0, \infty)$ be a continuous, non-increasing function. If $\int_0^\infty \tilde{f}(s)\,\mathrm{d}s < \infty$, then there exists $C_{d,p,f} > 0$ such that, for any $V \in L^p(\mathbb{R}^d)$,

$$
\sum_{\lambda \in \sigma_{\text{dis}}(-\Delta + V)} \frac{\text{dist}(\lambda,[0,\infty))^p}{|\lambda|^{d/2}} f\left(-\log\Big(\frac{\text{dist}(\lambda,[0,\infty))}{|\lambda|}\Big)\right) \leq C_{d,p,f} \|V\|_{L^p}^p
$$

where $C_{d,p,f}=C_{d,p}\cdot\left(\int_{0}^{\infty}f(s)\,\mathrm{d}s+f(0)\right)$ with $C_{d,p}>0$ independent of f .

Remark: Demuth-Hansmann-Katriel result corresponds to $f(s) = \exp(-\varepsilon s)$. There are L^1 -functions with a slower decay at infinity, such as

$$
f(s) \sim \frac{1}{s^{1+\epsilon}}, \quad f(s) \sim \frac{1}{s \log(s)^{1+\epsilon}}, \quad f(s) \sim \frac{1}{s \log(s) \log(\log(s))^{1+\epsilon}}, \quad \dots
$$

New Lieb–Thirring type inequalities

Theorem (Bögli 2023): Let $d \in \mathbb{N}$ and $p \geq \frac{d}{2} + 1$. Let $f : [0, \infty) \to (0, \infty)$ be a continuous, non-increasing function. If $\int_0^\infty \tilde{f}(s)\,\mathrm{d}s < \infty$, then there exists $C_{d,p,f} > 0$ such that, for any $V \in L^p(\mathbb{R}^d)$,

$$
\sum_{\lambda \in \sigma_{\text{dis}}(-\Delta + V)} \frac{\text{dist}(\lambda,[0,\infty))^p}{|\lambda|^{d/2}} f\left(-\log\Big(\frac{\text{dist}(\lambda,[0,\infty))}{|\lambda|}\Big)\right) \leq C_{d,p,f} \|V\|_{L^p}^p
$$

where $C_{d,p,f}=C_{d,p}\cdot\left(\int_{0}^{\infty}f(s)\,\mathrm{d}s+f(0)\right)$ with $C_{d,p}>0$ independent of f .

Remark: Demuth-Hansmann-Katriel result corresponds to $f(s) = \exp(-\varepsilon s)$. There are L^1 -functions with a slower decay at infinity, such as

$$
f(s) \sim \frac{1}{s^{1+\epsilon}}, \quad f(s) \sim \frac{1}{s \log(s)^{1+\epsilon}}, \quad f(s) \sim \frac{1}{s \log(s) \log(\log(s))^{1+\epsilon}}, \quad \dots
$$

Theorem (Bögli 2023, Bögli-Petpradittha-Štampach 2024+): Let $p > 1$. Let $f : [0, \infty) \to (0, \infty)$ be a continuous, non-increasing function with $\int_0^\infty f(s) \, ds = \infty$. Then

$$
\sup_{V\in L^p(\mathbb{R})}\frac{\sum_{\lambda\in\sigma_{\text{dis}}(-\Delta+V)}\frac{\text{dist}(\lambda,[0,\infty))^p}{|\lambda|^{1/2}}f\left(-\log\left(\frac{\text{dist}(\lambda,[0,\infty))}{|\lambda|}\right)\right)}{\|V\|_{L^p}^p}=\infty.
$$

References

- ▶ S. Bögli. Schrödinger operator with non-zero accumulation points of complex eigenvalues. Communications in Mathematical Physics 352, no. 2 (2017), pp. 629–639.
- \triangleright S. Bögli, F. Štampach. On Lieb–Thirring inequalities for one-dimensional non-self-adjoint Jacobi and Schrödinger operators. Journal of Spectral Theory 11, no. 3 (2021), pp. 1391–1413.
- ▶ S. Bögli, J.-C. Cuenin. Counterexample to the Laptev–Safronov conjecture. Communications in Mathematical Physics 398 (2023), pp. 1349–1370.
- \triangleright S. Bögli. Improved Lieb–Thirring type inequalities for non-selfadjoint Schrödinger operators. Memorial issue for Sergey Naboko in Operator Theory: Advances and Applications, Birkhäuser-Springer (2023).

Thank you for your attention!