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Scalar Sturm-Liouville IPs

The most complete results in the theory of inverse spectral problems have been
obtained for the Sturm-Liouville equation

− y′′ + q(x)y = λy. (1)

1 Marchenko, V.A. Sturm-Liouville Operators and Their Applications, Naukova
Dumka, Kiev (1977) (Russian); English transl., Birkhauser (1986).

2 Levitan, B.M. Inverse Sturm-Liouville Problems, Nauka, Moscow (1984)
(Russian); English transl., VNU Sci. Press, Utrecht (1987).

3 Freiling, G.; Yurko, V. Inverse Sturm-Liouville Problems and Their
Applications, Huntington, NY: Nova Science Publishers (2001).



Scalar Sturm-Liouville IPs

−y′′ + q(x)y = λy, x ∈ (0, π). (1)

The real-valued potential q ∈ L2(0, π) is uniquely speci�ed by:

1 (Borg, 1946) The eigenvalues {λn,j}∞n=1 of the boundary value problems for

(1) with BCs y(0) = y(j)(π) = 0, j = 0, 1.

2 (Marchenko) The eigenvalues {λn}∞n=1, (λn := λn,0) and the weight numbers

{αn}∞n=1, αn :=
π∫
0

S2(x, λn) dx, where S(x, λ) is the solution of (1) satisfying

S(0, λ) = 0, S′(0, λ) = 1.

3 The Weyl function M(λ) =
S′(π, λ)

S(π, λ)
.

{λn,0} � poles, {λn,1} � zeros, α−1
n = Res

λ=λn,0

M(λ).
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Scalar inverse Sturm-Liouville problem

−y′′ + q(x)y = λy, x ∈ (0, π), (1)

y(0) = y(π) = 0. (2)

Theorem (Spectral data characterization)

For numbers {λn, αn}n⩾1 to be the spectral data of the problem (1)-(2) with a

real-valued potential q ∈ L2(0, π), the following conditions are necessary and

su�cient:

λn ∈ R, λn ̸= λm if n ̸= m, αn > 0, (3)√
λn = n+

ω

πn
+

κn

n
, αn =

π

2n2
+

κn1

n3
, (4)

where

ω =
1

2

π∫
0

q(x) dx, {κn}, {κn1} ∈ l2.

4 Gelfand, I.M.; Levitan, B.M. On the determination of a di�erential equation
from its spectral function, Izvestiya Akad. Nauk SSSR. Ser. Mat. 15 (1951),
309�360 (Russian).



Matrix Sturm-Liouville IPs

In this talk, we consider the matrix Sturm-Liouville equation

− Y ′′(x) +Q(x)Y (x) = λY (x), x ∈ (0, π), (5)

with the singular potential Q ∈ W−1
2 ((0, π);Cm×m), that is, Q = σ′, σ ∈

L2((0, π);Cm×m), σ(x) = (σ(x))∗ a.e. on (0, π).

Equation (5) can be represented in the equivalent form

−(Y [1](x))′ − σ(x)Y [1](x)− σ2(x)Y (x) = λY (x), (6)

where Y [1](x) = Y ′(x)− σ(x)Y (x) is the quasi-derivative.

Direct and inverse spectral problems for di�erential operators with singular
coe�cients: Savchuk, Shkalikov, Hryniv, Mykytyuk, Djakov, Mityagin, Mirzoev,
Korotyaev, ...
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Matrix Sturm-Liouville IPs

The majority of studies on matrix Sturm-Liouville IPs on a �nite interval deal
with the Dirichlet or the Robin BCs:

Y (0) = Y (π) = 0, (7)

Y ′(0)−H1Y (0) = 0, Y ′(π) +H2Y (π) = 0, (8)

where H1, H2 ∈ Cm×m.

Uniqueness:

5 Carlson, R. An inverse problem for the matrix Schr�odinger equation, J. Math.
Anal. Appl. 267 (2002), 564�575.

6 Chabanov, V. M. Recovering the M-channel Sturm-Liouville operator from
M+1 spectra, J. Math. Phys. 45 (2004), no. 11, 4255�4260.

7 Malamud, M.M. Uniqueness of the matrix Sturm-Liouville equation given a
part of the monodromy matrix, and Borg type results, Sturm-Liouville
Theory, Birkh�auser, Basel (2005), 237�270.

8 Yurko, V.A. Inverse problems for matrix Sturm-Liouville operators, Russ. J.
Math. Phys. 13 (2006), no. 1, 111�118.



Matrix Sturm-Liouville IPs

Constructive solution:

9 Yurko, V. Inverse problems for the matrix Sturm-Liouville equation on a
�nite interval, Inverse Problems 22 (2006), 1139�1149.

Spectral data characterization:

10 Chelkak, D.; Korotyaev, E. Weyl-Titchmarsh functions of vector-valued
Sturm-Liouville operators on the unit interval, J. Func. Anal. 257 (2009),
1546�1588.

11 Mykytyuk, Ya.V.; Trush, N.S. Inverse spectral problems for Sturm-Liouville
operators with matrix-valued potentials, Inverse Problems 26 (2009), no. 1,
015009.

12 Bondarenko, N. Spectral analysis for the matrix Sturm-Liouville operator on
a �nite interval, Tamkang J. Math. 42 (2011), no. 3, 305�327.



Matrix Sturm-Liouville IPs

13 Chelkak, D.; Matveenko, S. Inverse vector-valued Sturm-Liouville problem. I.
Uniqueness theorem, preprint (2013), arXiv:1312.3621 [math.SP].

14 Xu, X.-C. Inverse spectral problem for the matrix Sturm-Liouville operator
with the general separated self-adjoint boundary conditions, Tamkang J.
Math. 50 (2019), no. 3, 321�336.

In [13, 14], the uniqueness theorems were proved for the matrix Sturm-Liouville
equation

−Y ′′(x) +Q(x)Y (x) = λY (x) (5)

with the general self-adjoint separated BCs

T1(Y
′(0)−H1Y (0))− T⊥

1 Y (0) = 0, T2(Y
′(π)−H2Y (π))− T⊥

2 Y (π) = 0, (9)

where Tj , T
⊥
j , Hj ∈ Cm×m, Tj are orthogonal projectors: Tj = T ∗

j = T 2
j , T

⊥
j = I−

Tj , I is the unit matrix, Hj = H∗
j = TjHjTj , j = 1, 2, Q = Q∗ ∈ L2((0, π);Cm×m).

BCs (9) were introduced in [15] for the study of di�erential operators on graphs.

15 Kuchment, P. Quantum graphs. I. Some basic structures, Waves Random
Media 14 (2004), no. 1, S107�S128.



Matrix Sturm-Liouville IPs

Inverse scattering problems for the matrix Sturm-Liouville operators on the half-
line:

16 Agranovich, Z.S.; Marchenko, V.A. The inverse problem of scattering theory,
Gordon and Breach, New York (1963).

17 Harmer, M. Inverse scattering for the matrix Schr�odinger operator and
Schr�odinger operator on graphs with general self-adjoint boundary conditions,
ANZIAM J. 43 (2002), 1�8.

18 Harmer, M. Inverse scattering on matrices with boundary conditions, J. Phys.
A. 38 (2005), no. 22, 4875�4885.

19 Aktosun, T.; Weder, R. Direct and Inverse Scattering for the Matrix
Schr�odinger Equation, Applied Mathematical Sciences, Vol. 203, Springer,
Cham, 2021.



Main Results

20 Bondarenko, N.P. Direct and inverse problems for the matrix Sturm-Liouville
operator with general self-adjoint boundary conditions, Math. Notes 109
(2021), no. 3, 358-378.

21 Bondarenko, N.P. Inverse problem solution and spectral data characterization
for the matrix Sturm-Liouville operator with singular potential, Anal. Math.
Phys. 11 (2021), Article number: 145.

IP for boundary value problem L:

− (Y [1](x))′ − σ(x)Y [1](x)− σ2(x)Y (x) = λY (x), (10)

V1(Y ) = T1(Y
[1](0)−H1Y (0))− T⊥

1 Y (0) = 0, (11)

V2(Y ) = T2(Y
[1](π)−H2Y (π))− T⊥

2 Y (π) = 0. (12)

Main results:

uniqueness,

constructive solution,

spectral data characterization.



Main Results: Asymptotics

Theorem 1

The boundary value problem L has the countable set of real eigenvalues, which

can be numbered as {λnk}(n,k)∈J counting with multiplicities in non-decreasing

order: λn1k1
⩽ λn2k2

, åñëè (n1, k1) < (n2, k2). The asymptotic relation holds:√
λnk = n+ rk + κnk, (n, k) ∈ J, {κnk} ∈ l2, (13)

where

J := {(n, k) : n ∈ N, k = 1,m} ∪ {(0, k) : k = p⊥ + 1,m},

p⊥ := dim(KerT1 ∩KerT2),

{rk}mk=1 are the zeros of w0(ρ) := det(W 0(ρ)) on [0, 1),

W 0(ρ) := (T2T1 + T⊥
2 T⊥

1 ) sin ρπ + (T⊥
2 T1 − T2T

⊥
1 ) cos ρπ.



Main Results: De�nitions

The Weyl solution of L is the matrix solution Φ(x, λ) of equation (10) satisfying

V1(Φ) = I, V2(Φ) = 0. (14)

The Weyl matrix of L is the matrix function

M(λ) := T1Φ(0, λ) + T⊥
1 Φ[1](0, λ). (15)

M(λ) is meromorphic in the λ-plane, all its singularities are simple poles which
conicide with the eigenvalues of L. De�ne the weight matrices:

αnk := Res
λ=λnk

M(λ), (n, k) ∈ J. (16)

The collection {λnk, αnk}(n,k)∈J is called the spectral data of L.



Main Results: De�nitions

The Weyl solution of L is the matrix solution Φ(x, λ) of equation (10) satisfying

V1(Φ) = I, V2(Φ) = 0. (14)

The Weyl matrix of L is the matrix function

M(λ) := T1Φ(0, λ) + T⊥
1 Φ[1](0, λ). (15)

M(λ) is meromorphic in the λ-plane, all its singularities are simple poles which
conicide with the eigenvalues of L. De�ne the weight matrices:

αnk := Res
λ=λnk

M(λ), (n, k) ∈ J. (16)

The collection {λnk, αnk}(n,k)∈J is called the spectral data of L.



Main Results: Asymptotics

Let λn1k1
= λn2k2

= · · · = λnrkr be a group of multiple eigenvalues maximal
by inclusion, (n1, k1) < (n2, k2) < · · · < (nr, kr). Clearly, αn1k1

= αn2k2
= · · · =

αnrkr . Denote α
′
n1k1

:= αn1k1
, αnjkj

:= 0, j = 2, r. Thus, the sequence of matrices

{α′
nk}(n,k)∈J is de�ned.

Theorem 2

The asymptotic relation holds:

α
(k)
n :=

∑
rs∈Jk

α′
ns =

2

π
(T1 +nT⊥

1 )(Ak +Knk)(T1 +nT⊥
1 ), n ⩾ 1, k ∈ J , (17)

where J := {1} ∪ {k = 2,m : rk ̸= rk−1}, Jk := {s = 1,m : rs = rk},
{∥Knk∥} ∈ l2,

Ak := π Res
ρ=rk

(W 0(ρ))−1U0(ρ),

U0(ρ) := (T2T1 + T⊥
2 T⊥

1 ) cos ρπ + (T2T
⊥
1 − T⊥

2 T1) sin ρπ,

{Ak}k∈J are orthogonal projection matrices such that

rank(Ak) = |Jk|, AkAs = 0, k ̸= s,
∑
k∈J

Ak = I.



Main Results: Asymptotics

√
λnk = n+ rk + κnk, k = 1,m, n ∈ N or n ∈ N ∪ {0}.

n n+r1
r1=r2=r3

n+r4
r4=r5

√
λn1

√
λn2

√
λn3

√
λn4

√
λn5



Main Results

Without loss of generality we assume that H1 = 0.

L = L(σ, T1, T2, H2):

− (Y [1](x))′ − σ(x)Y [1](x)− σ2(x)Y (x) = λY (x),

V1(Y ) = T1Y
[1](0)− T⊥

1 Y (0) = 0,

V2(Y ) = T2(Y
[1](π)−H2Y (π))− T⊥

2 Y (π) = 0.

Inverse Problem 1

Given the spectral data {λnk, αnk}(n,k)∈J , �nd σ, T1, T2, and H2.



Main Results: Uniqueness

Along with L, consider another boundary value problem L̃ = L(σ̃, T̃1, T̃2, H̃2) of
the same form but with di�erent coe�cients. We agree that if a symbol γ denotes an
object related to L, then the symbol γ̃ with tilde denotes the similar object related
to L̃. Note that the quasi-derivatives for these two problems are supposed to be
di�erent: Y [1] = Y ′ − σY for L and Y [1] = Y ′ − σ̃Y for L̃.

Theorem 3

If λnk = λ̃nk, αnk = α̃nk, (n, k) ∈ J, J = J̃, then

σ(x) = σ̃(x)+H⋄
1 a.e. on (0, π), T1 = T̃1, T2 = T̃2, H2 = H̃2−T2H

⋄
1T2, (18)

where

H⋄
1 = (H⋄

1 )
∗ = T⊥

1 H⋄
1T

⊥
1 . (19)

Thus, the spectral data {λnk, αnk}(n,k)∈J uniquely specify the problem L up to a

transform (18) given by an arbitrary matrix H⋄
1 satisfying (19).

If (18) holds, then M(λ) ≡ M̃(λ) +H⋄
1 .

Theorem 4

If M(λ) ≡ M̃(λ), then σ(x) = σ̃(x) a.e. on (0, π), T1 = T̃1, T2 = T̃2, H2 = H̃2.
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Comparison with the Scalar Case

−(y[1])′ − σ(x)y[1] − σ2(x)y = λy, x ∈ (0, π), (20)

σ ∈ L2(0, π), y[1] = y′ − σ(x)y.

y(0) = y(π) = 0 {λn, αn} → σ(x) + C,

y[1](0) = y(π) = 0 {λn, αn} → σ(x),

y(0) = y[1](π) +Hy(π) = 0 {λn, αn} → σ(x) + C, H + C,

y[1](0) = y[1](π) +Hy(π) = 0 {λn, αn} → σ(x), H.

22 Hryniv, R.O.; Mykytyuk, Y.V. Inverse spectral problems for Sturm-Liouville
operators with singular potentials, Inverse Problems 19 (2003), no. 3, 665�684.

23 Guliyev, N.J. Schr�odinger operators with distributional potentials and
boundary conditions dependent on the eigenvalue parameter, J. Math. Phys.
60 (2019), 063501.



Main Results: Characterization

Consider a group of multiple eigenvalues maximal by inclusion: λn1k1
= λn2k2

=
· · · = λnrkr . Then rank(αn1k1

) = r. Choose a basis {χnjkj
}rj=1 in Ranαn1k1

.

Thus, we have de�ned the vector sequence {χnk}(n,k)∈J .

X := {Xnk}(n,k)∈J , Xnk(x) :=

(
cos(

√
λnkx)T1 +

sin(
√
λnkx)√
λnk

T⊥
1

)
χnk.

Theorem 5

Let T1, T2 ∈ Cm×m be arbitrary �xed orthogonal projection matrices. Then, for a

collection {λnk, αnk}(n,k)∈J to be the spectral data of L = L(σ, T1, T2, H2), the
following conditions are necessary and su�cient:

1 λnk ∈ R, αnk ∈ Cm×m, αnk = α∗
nk ⩾ 0, rank(αnk) is equal to the

multiplicity of the corresponding value λnk, for all (n, k) ∈ J, and αnk = αls

if λnk = λls.

2 The asymptotic relations (13) and (17) hold, where {rk}mk=1 and {Ak}k∈J
are de�ned as in Theorems 1 and 2, respectively, by using the �xed T1 and T2.

3 X is complete L2((0, π);Cm).
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Method of Spectral Mappings

The proof of Theorem 5 and the constructive solution of Inverse Problem 1 are
based on the method of spectral mappings.

Regular potentials:

24 Yurko, V.A. Method of Spectral Mappings in the Inverse Problem Theory,
Inverse and Ill-Posed Problems Series, Utrecht, VNU Science (2002).

Singular potentials:

25 Freiling, G.; Ignatiev, M.Y.; Yurko, V.A. An inverse spectral problem for
Sturm-Liouville operators with singular potentials on star-type graph, Proc.
Symp. Pure Math. 77 (2008), 397�408.

26 Bondarenko, N.P. Solving an inverse problem for the Sturm-Liouville operator
with singular potential by Yurko's method, Tamkang J. Math. 52 (2021),
no. 1, 125-154.



Method of Spectral Mappings

Contour integration in the λ-plane.

Nonlinear IP is reduced to a linear main equation in a Banach space B:

ϕ̃(x) = (I + R̃(x))ϕ(x), (21)

where ϕ̃(x) ∈ B and the linear bounded operator R̃(x) : B → B are
constructed by the given {λnk, αnk}(n,k)∈J , and the unknown ϕ(x) ∈ B is
related to σ and H2, I is the unit operator B.

In the scalar case, B is the space of in�nite bounded sequences
a = [ani]n⩾1, i=0,1 with the norm ∥a∥B = sup

n,i
|ani|.

In the matrix case, the special Banach space is constructed by using the
grouping the eigenvalues with respect to their asymptotics.

Proof of the main equation solvability by su�ciency.
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− (y
[1]
j )′ − σj(xj)y

[1]
j − σ2

j (xj)yj = λyj , xj ∈ (0, π), j = 1,m, (22)

yj(0) = 0, j = 1,m, (23)

y1(π) = yj(π), j = 2,m,
m∑

j=1

(y
[1]
j (π)− hyj(π)) = 0, (24)

where {σj}mj=1 are real-valued functions of L2(0, π), y
[1]
j := y′j − σjyj , yj , y

[1]
j ∈

AC[0, π], (y
[1]
j )′ ∈ L2(0, π), j = 1,m, h ∈ R.
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Application to Quantum Graphs

The problem (22)-(24) can be represented in the matrix form L(σ, T1, T2, H2)
with

σ(x) = diag{σj(x)}mj=1, T1 = 0, T2 = [T2,jk]
m
j,k=1,

T2,jk = 1
m
, j, k = 1,m, H2 = hT2.

(25)

Inverse Problem 2

Given the spectral data {λnk, αnk}n⩾1, k=1,m, �nd {σj}mj=1 and h.

In the case of regular potentials, this problem statement is equivalent to the
problem of [27], which consist in the recovery of the Sturm-Liouville operator on
graph by the generalized Dirichlet-to-Neumann map. Inverse Problem 2 problem is
overdetermined, its spectral data contains the data of Yurko [28] as a subset.

27 Brown, B.M.; Weikard, R. A Borg-Levinson theorem for trees, Proc. Royal
Soc. A: Math. Phys. Eng. Sci. 461 (2005), 3231�3243.

28 Yurko, V. Inverse spectral problems for Sturm-Liouville operators on graphs,
Inverse Problems 21 (2005), no. 3, 1075�1086.
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Application to Quantum Graphs

Theorem 6

Let T2 be de�ned by (25). For {λnk, αnk}n⩾1, k=1,m to be the spectral data of

(22)-(24), the following conditions are necessary and su�cient:

1 λnk ∈ R, αnk ∈ Cm×m, αnk = α∗
nk ⩾ 0, rank(αnk) is equal to the

multiplicity of the corresponding value λnk, for all (n, k) ∈ J, and αnk = αls

if λnk = λls.

2 The asymptotic relations hold:√
λn1 = n−

1

2
+ κn1,

√
λnk = n+ κnk, k = 2,m,

αn1 =
2n2

π
(T2 +Kn1),

m∑
k=2

α′
nk =

2n2

π
(T⊥

2 +Kn2),

where {κnk} ∈ l2, {∥Knk∥} ∈ l2.

3 X is complete in L2((0, π);Cm).

4 The solution ϕ(x) of the main equation ϕ̃(x) = (I + R̃(x))ϕ(x) is diagonal

for each �xed x ∈ [0, π].



Thank you for your attention!


