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Scalar Sturm-Liouville IPs

The most complete results in the theory of inverse spectral problems have been
obtained for the Sturm-Liouville equation

—y" +alx)y =Xy (1)
Marchenko, V.A. Sturm-Liouville Operators and Their Applications, Naukova
Dumka, Kiev (1977) (Russian); English transl., Birkhauser (1986).

Levitan, B.M. Inverse Sturm-Liouville Problems, Nauka, Moscow (1984)
(Russian); English transl., VNU Sci. Press, Utrecht (1987).

Freiling, G.; Yurko, V. Inverse Sturm-Liouville Problems and Their
Applications, Huntington, NY: Nova Science Publishers (2001).

o)



Scalar Sturm-Liouville IPs

—y" +a(x)y = Ay, =€ (0,7). (1)
The real-valued potential ¢ € L2(0,7) is uniquely specified by:

(Borg, 1946) The eigenvalues {\,,;}52 ; of the boundary value problems for
(1) with BCs y(0) = y¥)(x) =0, j =0,1.




Scalar Sturm-Liouville IPs

—y" +a(x)y = Ay, =€ (0,7). (1)
The real-valued potential ¢ € L2(0,7) is uniquely specified by:

(Borg, 1946) The eigenvalues {\,,;}52 ; of the boundary value problems for
(1) with BCs y(0) = y¥)(x) =0, j =0,1.
(Marchenko) The eigenvalues {1\ }32 ;, (An := Ay 0) and the weight numbers

n=1>

U
{an} |, an = [ S?(z,A\n) dz, where S(z, ) is the solution of (1) satisfying
0

S(0,A) =0, §'(0,A) = 1.




Scalar Sturm-Liouville IPs

-y +al@)y =Xy, x€(0,m). (0
The real-valued potential ¢ € L2(0,7) is uniquely specified by:
(Borg, 1946) The eigenvalues {\,,;}52 ; of the boundary value problems for
(1) with BCs y(0) = y¥)(x) =0, j =0,1.
(Marchenko) The eigenvalues {A\n}22 1, (An := Ap,0) and the weight numbers
U
{an} |, an = [ S?(z,A\n) dz, where S(z, ) is the solution of (1) satisfying
0
S(0,2\) =0, S'(0,\) = 1.
S'(m, )

The Weyl function M(\) = SN



Scalar Sturm-Liouville IPs

—y" + q(x)y = Ay’ EAS (O,ﬂ'). (1)
The real-valued potential ¢ € L2(0,7) is uniquely specified by:

(Borg, 1946) The eigenvalues {\,,;}52 ; of the boundary value problems for
(1) with BCs y(0) = y¥)(x) =0, j =0,1.

(Marchenko) The elgenvalues {An}22 1, (A := Apn,0) and the weight numbers
{an}S2 1, an = fS (z, A\n) dz, where S(z, \) is the solution of (1) satisfying

0

S(0,2\) =0, S'(0,\) = 1.

S'(m, )

The Weyl function M(\) = SN

{0} — poles, {\n,1} — zeros, an ' = Res M(N).

A=An.0



Scalar inverse Sturm-Liouville problem

_y// + q(x)y =Xy, T€ (0,71’), (1)
y(0) = y(m) = 0. (2

Theorem (Sp

For numbers {\n, oan}n>1 to be the spectral data of the problem (1)-(2) with a
real-valued potential ¢ € L2(0,7), the following conditions are necessary and

sufficient:
M ER, Ay #Z A ifn#m, ap>0, (3)
w », T »,
Vin=nt —+22 an=-—+2 (4)
™ n 2n n3
where

w =

N | =

/q(m)dw, L}, e} € Lo,
0

Gelfand, I.M.; Levitan, B.M. On the determination of a differential equation

from its spectral function, Izvestiya Akad. Nauk SSSR. Ser. Mat. 15 (1951),
309-360 (Russian).



Matrix Sturm-Liouville IPs

In this talk, we consider the matrix Sturm-Liouville equation

—Y"(2) + Q@)Y (x) = XY (), =€ (0,m), (4)

with the singular potential Q € W;l((O7 m); C™*™) that is, Q = o/, o €
Lo((0,m); C™*™), g(z) = (o(z))* a.e. on (0, 7).




Matrix Sturm-Liouville IPs

In this talk, we consider the matrix Sturm-Liouville equation

—Y"(2) + Q@)Y (x) = XY (), =€ (0,m), (4)
with the singular potential Q € W;l((O7 m); Cm*™) that is, @ = o/, ¢ €
Lo((0,m); C™*™), g(z) = (o(z))* a.e. on (0, 7).

Equation (5) can be represented in the equivalent form
~(Y(@) = o(@)YM(2) - 0% (@)Y (z) = AY (), (6)

where Y(1(z) = Y/(2) — o(2)Y (z) is the quasi-derivative.

Direct and inverse spectral problems for differential operators with singular
coefficients: Savchuk, Shkalikov, Hryniv, Mykytyuk, Djakov, Mityagin, Mirzoev,
Korotyaev, ...



Matrix Sturm-Liouville IPs

The majority of studies on matrix Sturm-Liouville IPs on a finite interval deal
with the Dirichlet or the Robin BCs:

Y(0)=Y(x) =0, (7)
Y'(0) — H1Y(0) =0, Y'(m)+ H2Y(w) =0, (8)
where Hy, Hy € C™*™,

Uniqueness:

Carlson, R. An inverse problem for the matrix Schrodinger equation, J. Math.
Anal. Appl. 267 (2002), 564-575.

Chabanov, V. M. Recovering the M-channel Sturm-Liouville operator from
M+1 spectra, J. Math. Phys. 45 (2004), no. 11, 4255-4260.

Malamud, M.M. Uniqueness of the matrix Sturm-Liouville equation given a
part of the monodromy matrix, and Borg type results, Sturm-Liouville
Theory, Birkhduser, Basel (2005), 237-270.

Yurko, V.A. Inverse problems for matrix Sturm-Liouville operators, Russ. J.
Math. Phys. 13 (2006), no. 1, 111-118.



Matrix Sturm-Liouville IPs

Constructive solution:

Yurko, V. Inverse problems for the matrix Sturm-Liouville equation on a
finite interval, Inverse Problems 22 (2006), 1139-1149.

Spectral data characterization:

Chelkak, D.; Korotyaev, E. Weyl-Titchmarsh functions of vector-valued
Sturm-Liouville operators on the unit interval, J. Func. Anal. 257 (2009),
1546-1588.

Mykytyuk, Ya.V.; Trush, N.S. Inverse spectral problems for Sturm-Liouville
operators with matrix-valued potentials, Inverse Problems 26 (2009}, no. 1,
015009.

[Pl Bondarenko, N. Spectral analysis for the matrix Sturm-Liouville operator on
a finite interval, Tamkang J. Math. 42 (2011), no. 3, 305-327.



Matrix Sturm-Liouville IPs

Chelkak, D.; Matveenko, S. Inverse vector-valued Sturm-Liouville problem. I.
Uniqueness theorem, preprint (2013), arXiv:1312.3621 [math.SP].

Xu, X.-C. Inverse spectral problem for the matrix Sturm-Liouville operator
with the general separated self-adjoint boundary conditions, Tamkang J.
Math. 50 (2019), no. 3, 321-336.

In [13, 14], the uniqueness theorems were proved for the matrix Sturm-Liouville
equation

—Y"(z) + Q@)Y (z) = AY (2) (5)
with the general self-adjoint separated BCs

Ti(Y'(0) — H1Y(0)) = T{-Y(0) =0, To(Y'(n) — H2Y (m)) — T5"Y (7) =0, (9)

where T7, le, Hj € C™>*™ T; are orthogonal projectors: T = Tj* = T].Q7 le =1—
Tj, I is the unit matrix, H; = H; = T; H;Tj,j = 1,2, Q = Q* € L2((0, m); C™*™).
BCs (9) were introduced in [15] for the study of differential operators on graphs.

6] Kuchment, P. Quantum graphs. I. Some basic structures, Waves Random
Media 14 (2004), no. 1, S107-5128.



Matrix Sturm-Liouville IPs

Inverse scattering problems for the matrix Sturm-Liouville operators on the half-
line:
Agranovich, Z.S.; Marchenko, V.A. The inverse problem of scattering theory,
Gordon and Breach, New York (1963).

ifd Harmer, M. Inverse scattering for the matrix Schrédinger operator and
Schrédinger operator on graphs with general self-adjoint boundary conditions,
ANZIAM J. 43 (2002), 1-8.

Harmer, M. Inverse scattering on matrices with boundary conditions, J. Phys.
A. 38 (2005), no. 22, 4875-4885.

Aktosun, T.; Weder, R. Direct and Inverse Scattering for the Matrix
Schrédinger Equation, Applied Mathematical Sciences, Vol. 203, Springer,
Cham, 2021.



Main Results

Bondarenko, N.P. Direct and inverse problems for the matrix Sturm-Liouville
operator with general self-adjoint boundary conditions, Math. Notes 109
(2021), no. 3, 358-378.

Bondarenko, N.P. Inverse problem solution and spectral data characterization
for the matrix Sturm-Liouville operator with singular potential, Anal. Math.
Phys. 11 (2021), Article number: 145.

1P for boundary value problem L:
- (YW@) - o@)YM(@) - o*@)Y () = \Y (@), (10)
Vi(Y) = Tu (Y(0) — H1 Y (0)) — T+ Y (0) = 0, (11)
Va(Y) = To (Y () — HaY (7)) — T5"Y (m) = 0. (12)
Main results:
m uniqueness,

m constructive solution,

m spectral data characterization.



Main Results: Asymptotics

Theorem 1

The boundary value problem L has the countable set of real eigenvalues, which

can be numbered as {)\nk}(mk)eJ counting with multiplicities in non-decreasing

order: A k; < Angky, ecau (n1,k1) < (n2,k2). The asymptotic relation holds:
VAnk =n+rp+ sk, (k) €J, {smp} € o, (13)

where

J:={(n,k):neN, k=1,m}uU{(0,k): k =pt+1,m},
pt = dim(KerT) N KerTh),

{re}™_, are the zeros of w°(p) := det(W°(p)) on [0,1),

WO (p) == (ToTy + T5-Ti") sin prr + (T5-T1 — ToTi) cos pr.



Main Results: Definitions

The Weyl solution of L is the matrix solution ®(x, \) of equation (10) satisfying
Vi(®)=1, Va(®)=0. (14)

The Weyl matriz of L is the matrix function

M()\) :=T1®(0,A) + Ti- @0, ). (15)




Main Results: Definitions

The Weyl solution of L is the matrix solution ®(x, \) of equation (10) satisfying
Vi(®) =1, Va(®)=0. (14)

The Weyl matriz of L is the matrix function
M()\) :=T1®(0,A) + Ti- @0, ). (15)

M(X) is meromorphic in the A-plane, all its singularities are simple poles which
conicide with the eigenvalues of L. Define the weight matrices:

ank == Res M(N\), (n,k)€J (16)
A=Ank

The collection { Ak, dnk}(n,k)es I8 called the spectral data of L.



Main Results: Asymptotics

Let Ay ik, = Angks = -+ = An,.k, be a group of multiple eigenvalues maximal
by inclusion, (nl,k1) < (n2,k2) < - < (np, k). Clearly, ok = Qngky = -+ =
Qn,.k,.- Denote an ky = Qnikis Ok i= 0, j = 2,r. Thus, the sequence of matrices

{ank}(n,k)ef is defined.

The asymptotic relation holds:

(k) * Z ans

rs€Jg

T1 +nTi) (A + Kn) (T +0T15), n>1, ke J, (17)

where J :={1}U{k=2,m: rg Zri_1}, Jp :={s=1,m: rs =11},
{1 Knkll} € L2,

Ay, :=7 Res (W°(p))~'U°(p),
P=TE
U%(p) == (ToTy + T5-Ti-) cos pre + (ToTi- — T5-T4) sin pr,
{Ar}reg are orthogonal projection matrices such that

rank(Ag) = |Jx), ApAs =0, k # s, o Ap=1
keJ



Main Results: Asymptotics

VAnk =n+rg +mk, k=1,m, neNorneNU{0}.

Vv An1 V An2 Vv )\n3 An4 V A71,.5

n n+ry n+ry
T1="r2="73 T4="5




Main Results

Without loss of generality we assume that H; = 0.

L = L(o,Th, T2, H2):
- (YW(@) - o(@)YM(@) - * (@)Y () = Y (),
Vi(Y) =T YH0) - Ty (0) =0,
Va(Y) = To(YH () — HyY (7)) — T5-Y () = 0.

Inverse Problem 1

Given the spectral data {Ank, ank}(n,k)es, find o, T1, Tz, and Hs.



Main Results: Uniqueness

Along with L, consider another boundary value problem L= L(s, Ty, Th, Hg) of
the same form but with different coefficients. We agree that if a symbol v denotes an
object related to L, then the symbol 4 with tilde denotes the similar object related
to L. Note that the quasi-derivatives for these two problems are supposed to be
different: Y[ =Y’ — oY for L and Y[! =Y’ — 5Y for L.




Main Results: Uniqueness

Along with L, consider another boundary value problem L= L(s, Ty, Th, Hg) of
the same form but with different coefficients. We agree that if a symbol v denotes an
object related to L, then the symbol 4 with tilde denotes the similar object related
to L. Note that the quasi-derivatives for these two problems are supposed to be
different: Y[ =Y’ — oY for L and Y[! =Y’ — 5Y for L.

Theorem 3

If A = 5\nky Qn = Gnk, (n,k) €J, J= j7 then
cf(z) = 5’(33)+Hf a.e. 071(0,71’)7 T = T’l, T> :TQ, Hy = Hz—TQHfTQ, (18)

where
HY = (HY)* = T{-H{Ti-. (19)

Thus, the spectral data {)\nk7ank}(n’k)ej uniquely specify the problem L up to a
transform (18) given by an arbitrary matriz HY satisfying (19).



Main Results: Uniqueness

Along with L, consider another boundary value problem L= L(s, Ty, Th, Hg) of
the same form but with different coefficients. We agree that if a symbol v denotes an
object related to L, then the symbol 4 with tilde denotes the similar object related
to L. Note that the quasi-derivatives for these two problems are supposed to be
different: Y[ =Y’ — oY for L and Y[! =Y’ — 5Y for L.

Theorem 3
If Apg = 5\nky Qnk = Qnk, (n7 k) e€J,J= j7 then

a(z) = 5(I)+Hf a.e. 071(0,71’)7 T = Tl, 1> :'f’g, Hy = Hz—TQHfTQ, (18)

where
HY = (HY)* = T{-H{Ti-. (19)

Thus, the spectral data {)\nk”ank}(n’k)ej uniquely specify the problem L up to a
transform (18) given by an arbitrary matriz HY satisfying (19).

If (18) holds, then M(X\) = M()\) + HY.

Theorem 4
If M(\) = M()), then o(z) = 6(x) a.e. on (0,7), Ty = T1, To = Ta, Ho = Ha.



Comparison with the Scalar Case

~MY = o(@)y - o (2)y = Ny, € (0,m), (20)
oeL0,m), Yyl =y —o@)y.

y(0) =y(m) =0  {An,an} = o(2) +C,
yHO) =ym =0 n,an} = o),
y(0) = yM(m) + Hy(m) =0 {An,an} = o(@) +C, H+C,
y () =y (@) + Hy(m) =0 {An,an} > o(x), H

Hryniv, R.O.; Mykytyuk, Y.V. Inverse spectral problems for Sturm-Liouville
operators with singular potentials, Inverse Problems 19 (2003), no. 3, 665—684.

Guliyev, N.J. Schrodinger operators with distributional potentials and
boundary conditions dependent on the eigenvalue parameter, J. Math. Phys.
60 (2019), 063501.



Main Results: Characterization

Consider a group of multiple eigenvalues maximal by inclusion: Ay 5, = Aok, =
<+ = Ap,k,.- Then rank(an,x,) = r. Choose a basis {ankj }§:1 in Ran oy, k, -
Thus, we have defined the vector sequence {Xnk}(n,k)eJ-

sin(v/ ApgT
X = {Xnk}(n,k)€J7 Xnk(x) = (COS( Vv Ankx)Tl + MTIL) Xnk-

>\nk




Main Results: Characterization

Consider a group of multiple eigenvalues maximal by inclusion: Ay 5, = Aok, =
<+ = Ap,k,.- Then rank(an,x,) = r. Choose a basis {ank]. }§:1 in Ran oy, k, -
Thus, we have defined the vector sequence {Xnk}(n,k)eJ-

sin(v/ ApgT
X = {Xnk}(n,k)EJ) Xnk(x) = (COS( Vv Ankx)Tl + %TIL) Xnk-
nk

Let Ty, T € C™*™ be arbitrary fized orthogonal projection matrices. Then, for a
collection {)\nk,ank}(n,k)eJ to be the spectral data of L = L(o,Th, T, Ha), the
following conditions are necessary and sufficient:

Ank ER, app € C™X™ app = af ), > 0, rank(any) is equal to the
multiplicity of the corresponding value Apg, for all (n,k) € J, and anx = ays
if Ank = Ais-

The asymptotic relations (13) and (17) hold, where {ri}7* | and {Ax}res
are defined as in Theorems 1 and 2, respectively, by using the fized T and Ts.

X is complete L2((0,7); C™).



Method of Spectral Mappings

The proof of Theorem 5 and the constructive solution of Inverse Problem 1 are
based on the method of spectral mappings.

Regular potentials:

Yurko, V.A. Method of Spectral Mappings in the Inverse Problem Theory,
Inverse and Ill-Posed Problems Series, Utrecht, VNU Science (2002).

Singular potentials:

Freiling, G.; Ignatiev, M.Y.; Yurko, V.A. An inverse spectral problem for
Sturm-Liouville operators with singular potentials on star-type graph, Proc.
Symp. Pure Math. 77 (2008), 397-408.

Il Bondarenko, N.P. Solving an inverse problem for the Sturm-Liouville operator
with singular potential by Yurko’s method, Tamkang J. Math. 52 (2021),
no. 1, 125-154.



Method of Spectral Mappings

m Contour integration in the A-plane.

m Nonlinear IP is reduced to a linear main equation in a Banach space ‘B:
¢(x) = (T + R(x))o(x), (21)

where é(z) € B and the linear bounded operator R(z): B — B are
constructed by the given {A\nx, @nk}(n,k)es, and the unknown ¢(z) € B is
related to o and Ha, 7 is the unit operator B.




Method of Spectral Mappings

m Contour integration in the A-plane.

m Nonlinear IP is reduced to a linear main equation in a Banach space ‘B:
¢(x) = (T + R(x))o(x), (21)

where é(z) € B and the linear bounded operator R(z): B — B are
constructed by the given {A\nx, @nk}(n,k)es, and the unknown ¢(z) € B is
related to o and Ha, 7 is the unit operator B.

m In the scalar case, B is the space of infinite bounded sequences
a = [aniln>1,i=0,1 with the norm |lalls = sup |an;|.
n,t
m In the matrix case, the special Banach space is constructed by using the
grouping the eigenvalues with respect to their asymptotics.



Method of Spectral Mappings

m Contour integration in the A-plane.

m Nonlinear IP is reduced to a linear main equation in a Banach space ‘B:

é(2) = (T + R(x))¢(x), (21)

where é(z) € B and the linear bounded operator R(z): B — B are
constructed by the given {A\nx, @nk}(n,k)es, and the unknown ¢(z) € B is
related to o and Ha, 7 is the unit operator B.

m In the scalar case, B is the space of infinite bounded sequences
a = [aniln>1,i=0,1 with the norm |lalls = sup |an;|.

n,t

m In the matrix case, the special Banach space is constructed by using the

grouping the eigenvalues with respect to their asymptotics.

m Proof of the main equation solvability by sufficiency.



Application to Quantum Graphs

@MY — i@y — o)y = My, oz € (O,0), j=Tom,  (22)

Yj (0) =0, j=1,m, (23)
(1)
Y1 (77) =Yj (ﬂ-)7 Jj=2,m, Z(y] (ﬂ-) - hy] (ﬂ-)) =0, (24)
j=1
where {0;}7L, are real-valued functions of L2(0, ), yj[.l] = Y= 0Y5, yj,yj[.l] €

Ac(o, 7], (WY € La(0,7), j = T,m, h € R.

v2

€2

V3 e3 U1
T T e1

€4




Application to Quantum Graphs

The problem (22)-(24) can be represented in the matrix form L(c,T1, T, H2)
with

o(z) =diag{o;(x)}]Ly, T1=0, To=[To;n]%_1 (25)

Tojk = =, j,k=1,m, Hay=hTh.




Application to Quantum Graphs

The problem (22)-(24) can be represented in the matrix form L(c,T1, T, H2)
with
o(z) =diag{o;(x)}]Ly, T1=0, To=[To;n]%_1

25
Tojk = =, j,k=1,m, Hay=hTh. (25)

Inverse Problem 2

Given the spectral data {Ank, onk}, 51, p=Tm find {o;}7L, and h.

In the case of regular potentials, this problem statement is equivalent to the
problem of [27], which consist in the recovery of the Sturm-Liouville operator on
graph by the generalized Dirichlet-to-Neumann map. Inverse Problem 2 problem is
overdetermined, its spectral data contains the data of Yurko [28] as a subset.

P Brown, B.M.; Weikard, R. A Borg-Levinson theorem for trees, Proc. Royal
Soc. A: Math. Phys. Eng. Sci. 461 (2005), 3231-3243.

Yurko, V. Inverse spectral problems for Sturm-Liouville operators on graphs,
Inverse Problems 21 (2005), no. 3, 1075-1086.



Application to Quantum Graphs

Let Ty be defined by (25). For {)‘"k7a"k}n>l, k=T to be the spectral data of
(22)-(24), the following conditions are necessary and sufficient:

Ank ER, apg € CX™, ap = o > 0, rank(any) s equal to the
multiplicity of the corresponding value A, for all (n, k) € J, and anr = ays
if Ank = Ais-

A The asymptotic relations hold:

1
\/>\n1:n_§+%n17 VAnk =1+ sk, k=2,m,

2n2
aanT(TQ-‘er), Za T2 + Kn2),

where {%nk} € lg, {HKnk“} €la.
X is complete in La((0,7); C™).

The solution ¢(z) of the main equation ¢(z) = (T + R(xz))d(z) is diagonal
for each fized x € [0, 7].



Thank you for your attention!




