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Abstract—An analog of the classical Young’s inequality for convolutions of functions is proved
in the case of general global Morrey-type spaces. The form of this analog is different from
Young’s inequality for convolutions in the case of Lebesgue spaces. A separate analysis is
performed for the case of periodic functions.
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1. INTRODUCTION. GENERAL MORREY-TYPE SPACES

Over the last three decades, the general local and global Morrey-type spaces have been in the
focus of many studies (see, e.g., [12, 16, 17, 19, 21, 24, 25, 29, 30, 37]).

In particular, for a certain range of the numerical parameters 0 < p1, po, 01,02 < oo of the general
local Morrey-type spaces LM, g, () and LMp,g, (), necessary and sufficient conditions on the
functional parameters w; and wsy have been obtained under which the maximal operator [11-13],
the fractional maximal operator |7, 14, 16|, the Riesz potential [8, 15, 17|, genuine singular integral
operators [18, 19|, and the Hardy operator |20, 22| are bounded as operators acting from the space
LMy 9, () to the space LM, g, (.- In those studies, only natural assumptions—ensuring that the
spaces LMy g, () and LM,,,4, ., () are nontrivial—have been initially made about the functions
w1 and wsy.

The recent survey papers [3, 23, 28, 34-36| describe in detail the present state of the operator
theory in general Morrey-type spaces and various applications of this theory.

One of the most common definitions of general Morrey-type spaces is as follows. Let B(x,r)
denote the open ball in R” of radius r > 0 with center at a point x € R".

Definition 1. Let 0 < p,0 < 0o, and let w be a nonnegative Lebesgue measurable function
on the half-axis (0,00) that is not equivalent to zero. The local Morrey-type space LMpg ..y =
LMpg ..y (R™) is the space of all Lebesgue measurable functions f on R™ with finite quasinorm

100,00y = (w2, B0 1y 0,00
The global Morrey-type space G My .y = GMpg () (R™) is the space of all Lebesgue measurable

functions f on R™ with finite quasinorm

G,y = SUP ILF (- Meatys,uc) = fellﬂgjlw(?“)\lf\lL,,(B(x,r»HLQ(O,OO)-

Remark 1. If the function w is equivalent to zero (in short, w ~ 0) on (¢,00) for some t > 0,
then we set

b=inf{t >0: w~0 on (t,00)}.
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108 V.I. BURENKOV, T.V. TARARYKOVA

If w(r) =0 and || f||z,(B(,r) = o0, then we assume that w(r)||f||z,B(r)) = 0. Under this agree-
ment,

”f”LMpe,w(.) = Hw(r)”f”Lp(B(O,r)) HLQ(O,b)’ ”f”GMpe,w(.) = :ESGURELHw(T)HfHLp(B(:v,r)) HLQ(O,b)'

In the case of local Morrey-type spaces (in contrast to global Morrey-type spaces), the finiteness
of || fllLn,e..,(., does not impose any constraints on the behavior of the function f for |z| > b. For
definiteness, we assume that f(x) =0 for |z| > b.

If § = co and w(-) = 1, then LMo 1 = GMpoo1 = L,p(R™), while if 6 = oo and w(r) = r=*,
0 < XA <n/p, then
GM, .- = Mg‘

poo,r

is the classical Morrey space and
LM, ,—» = LM,

poo,r

is a local version of the Morrey space.

The spaces Mg‘ are nontrivial (i.e., they consist not only of functions equivalent to zero on R™)
if and only if 0 < A < n/p. The spaces LMI;\ are nontrivial if and only if A > 0. For A = 0, we have
LM? = M9 = L,,. For A\ = n/p, we have My"? = L.

Let us discuss the relationship between the Morrey spaces M;‘ and the Nikol’skii spaces H;‘
(1 <p< oo, A>0) consisting of all Lebesgue measurable functions on R™ such that

1Ay = WMz + £y < o0

where

-\
[y = sup [RHAT L,
hER™, h£0

)

here A7 f is the difference of the function f of order o € N with step h € R" and o > A. (These
definitions for different o > A are equivalent.)
Note that for 1 <p < oo and 0 < XA < n/p,

A A
Hy C M,
(the inclusion is strict); moreover, for any € > 0,
A A+
) ¢ M)e.
See Nikol’skii’s paper [31] as well as his survey paper [32] for details. (For n = 1, see [26]; regarding
generalizations, see 2, 4-6, 9, 10, 27].) A detailed account of the theory of the spaces Hg‘ can be
found in the books [1, 33, 38.
We will say that f € (ng‘)loc if fne HI;\ for any infinitely continuously differentiable function 7

with compact support.
In some cases, the parameter A of the spaces M;‘ and LM;‘ behaves like the smoothness param-

eter \ of the spaces H;‘; for example,
1Dl = I @l 1) s = P @) s
1)y = ™7 I1F @)l
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AN ANALOG OF YOUNG’S INEQUALITY FOR CONVOLUTIONS 109
for all e > 0, and for « € R
||* € LM, & =™ € M) & |z|* € (H})"° & a>A-

under appropriate assumptions on the parameters p and .

The first natural question concerning general Morrey-type spaces is to find out for what func-
tions w the spaces LM g ) and GM,g .y are nontrivial. To answer this question, we need the
following definition.

Definition 2. Let 0 < p,0 < oco. Then €y is the set of all functions w that are nonnegative,
Lebesgue measurable on (0,00), not equivalent to zero, and are such that

l[w(r)ll Ly (t,00) < 00 (1.1)

for some t > 0. Further, €29 is the set of all functions w that are nonnegative, Lebesgue measurable
on (0,00), not equivalent to zero, and are such that

()" P Lo <00 [w(r)llLy(too) < 00 (1.2)

for some t > 0, or, which is equivalent,
T \"/P
()]
for some t > 0.

Note that if condition (1.2) (and, hence, condition (1.3)) holds for some ¢ > 0, then it holds for
all £ > 0.
Let

1.
Lo(0.00) < 00 (1.3)

a=inf{t > 0: |lwlL, o) < o0}
Note that if w € 2,9, then a = 0.

Lemma 1 [13,20]. Let 0 < p,0 < oo, and let w be a nonnegative Lebesque measurable function
on (0,00) that is not equivalent to zero.

The space LMpg () is nontriial if and only if w € Qg, and the space GM,g () is nontrivial
if and only if w € Qpg.

Moreover, if w € Qg, then the space LM,yg ) contains all functions f € Ly(R") that vanish
on B(0,t) for some t > a.

If w e Qg then Ly(R™) N Loo(R™) C GMpg (.y-

Let w € y or w € $Q,9; suppose that the function w is not equivalent to zero on the in-
terval (t,00) for any ¢ > 0. It may happen that the function w is equivalent to zero on some
subintervals of the interval (a,o0), which is inconvenient for some applications. One can overcome
this disadvantage by replacing the function w with another function w that is positive on (a, c0) and
is such that the quasinorms || f||Lar,,.,, and [|f||lLa,e 500 as Well as || fllaa,., ., and || fllem,
differ little from each other. More precisely, the following statement is valid.

Let Qj and Q;e be the sets of all functions w € Qg and w € 4, respectively, that are positive
on (0,00).

6,w(-)?

Theorem 1 [37]. Let 0 < p,0 < oo and w € Qp; suppose that the function w is not equivalent
to zero on the interval (t,00) for any t > 0.
If 0 < oo, then, for any € > 0, there exists a function w. € Q;r such that we > w on (0,00),
LMpp,we () = LMpp,u(), and
120,00y < NFL010, 0y < (XA LALg 0
for all f € LMpg .y
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If 6 = oo, then there exists a function w € QI such that w > w on (0,000), LM,y () =
LMoo (), and

”f”LMpoo,m(.) = HfHLMpoo,w(.) (1'4)

Jor all f € LMy ). Moreover, there exists a function W € QL such that w > w almost
everywhere on (0,00), W does not increase and is continuous on the right on (a,00), LMy () =
LMoo (), and equality (1.4) with W instead of w is satisfied.

A similar statement is wvalid if the classes Qg and Qj are everywhere replaced with Qpg
and Q;;e and the local Morrey-type spaces LM, () are replaced with the global Morrey-type
spaces G Mo (.-

In the present study we prove an analog of the classical Young’s inequality for convolutions in
the case of general global Morrey-type spaces. The form of this analog is different from Young’s
inequality for convolutions in the case of Lebesgue spaces. Section 2 is of auxiliary character. The
main result is contained in Section 3. In Section 4, we present inequalities for truncated convolutions.
The case of periodic functions is considered in Section 5.

2. ANALOG OF A MULTIPLICATIVE INEQUALITY FOR GENERAL
LOCAL AND GLOBAL MORREY-TYPE SPACES

In the case of Lebesgue spaces, the following well-known multiplicative inequality is valid:

HfHLp(Q) < HfH%;l(Q)HfH%iQ(Q) (2'1)
for all f e Ly, () N Ly, (2), where €2 is a measurable set in R™ and
0<a,an <1, o) +ag =1, 0 < p1,p2,p < 00, %—1—%:1. (2.2)
b1 2 p
The following inequalities are analogs of inequality (2.1) for local and global Morrey-type spaces.
Lemma 2. Let condition (2.2) hold and let, in addition,

a7 a9 1

01,609,0 < — 4+ === 2.
0< 1,02,V = OQ, 91+‘92 97 ( 3)
and
w(r) = wi* (r)wy?(r), r > 0. (2.4)
Then
(1) w € Qg for all wy € Qp, and wa € Qy,, and the inequality
aq a2
1Fletpamey < 19050 o o I (25)
is valid for all f € LMy g, w, () N LMp,0, wo()
(2) w e Qpg for all wy € Qpg, and wy € Qp,p,, and the inequality
163y < 15000, 0, o NN, (26
is wvalid for all f € GMpy g, w,() N GMp,o,u,(.y; i particular, for 0 < Ay < n/py and

0 S )\2 S n/p?;

£ 1 pzarareara < ||f||j};11||flljj322'

Proof. 1. Let w; € Qy, and wa € Qy,. According to Definition 2, for some ¢1,t2 > 0 we have
lwill Ly, (t1,00) < 00 and [lwa||z, (15,00 < 00. Let t = max{t1,t2}. Using conditions (2.2) and (2.3),
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AN ANALOG OF YOUNG’S INEQUALITY FOR CONVOLUTIONS 111

we apply inequality (2.1) in which p, p1, and py are replaced by 6, 61, and 6. Then

HwHLg(t 00) < ”w1”L9 (t1,00 HU)?H%;@QQO) < 0.

Thus, w € Qy.

Next, let f € LMy 9, 1,y N LMpy, 1s(.y- Applying inequality (2.1) with © = B(0,7), equal-

ity (2.4), and then taking into account condition (2.3) and Holder’s inequality with exponents 6,
01/a1, and 6/a9, we obtain

HfHLMpew Hw P, Bom) HLQ(OOO > Hw ||f||Lp1(B (0,7)) HfHLp2 (B(0,r) )HLg(O,oo)

- H (wl("”)HfHLp1 (B(O,r)))al (w2(7”)”f”Lp2(B(o,r))) ’ HLQ(O,OO)
< (w1(7“)\|fHLp1 Bom)" HLel/al(O,oo)H (U’?(T)||f||Lp2(B(0,T)))a2 HLQQ/QQ(O,OO)
= s fllz,, oz, 000 lw2 Iz, mom Iz, 0.0

= [IFIIZ; 1F11Z3

Mp161,w1() Mpp09,ws ()’

which implies inequality (2.5).
2. Now, let wy € Qp,9, and wy € Q,,0,. Let us verify condition (1.3) for the function w. Using
condition (2.3), we apply Holder’s inequality with exponents 0, 61 /a1, and 63/as. Then

10 () oy =N G ™) (0 () ™)
< Jo ) I ol G I <

Thus, w € Qpg.
Next, let f € GM, 9, w, () N GMp,p, w,()- According to inequality (2.5),

1716300 = SR 17+ et € 590 (45, o WG4 )

2ERn p 01, wq
a1 a2
< ( sup || f(z +)llzas,,o, m)) ( sup [|f(z + )| Ln,,0,, wg())
zER™ zeR™
= W 1&h,, 5y g 1 NG gy 0y B

Remark 2. In Section 3, we will make use of inequality (2.6) in the case when w; = wy =
w e le N Qgg.

3. ANALOG OF YOUNG’S INEQUALITY FOR CONVOLUTIONS OF FUNCTIONS
IN THE CASE OF GENERAL GLOBAL MORREY-TYPE SPACES

Let f1 and fy be measurable functions and

(f1* fo)(x /f1 x —y)f2(y) dy, z € R",

be the convolution of these functions.
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112 V.I. BURENKOV, T.V. TARARYKOVA

In this section, we formulate and prove an analog of Young’s inequality for convolutions in
Lebesgue spaces:

1 f1 % follz, < [l fillz,, I1f2llz,, (3.1)
for all fr € Ly, , k = 1,2, where
1 1 1
1<p,pp<p<oo, —+—=—-+1 (3.2)
b1 b2 b

If 1 < py =p < o0, then the inequality takes the form

11 follz, <l fillz.llf2llz,- (3-3)

Applying the generalized Minkowski inequality for integrals twice, we can easily prove that if
1 <p,0 < oo and w € €29, then

1f1 % follamg wiy < il f2llantyg (3.4)
for all fi € Ly and f5 € GMpg’w(_); in particular, for any 0 < A <n/p and all f; € Ly and fs € M;‘,
11 fallary < Al f2llagy- (3.5)

These are direct analogs of Young’s inequality (3.3) (L, is replaced by G Mg .y and M;‘, respec-
tively).
Indeed, for all x € R”,

1 * Follz, ey = / fole — y) fu(y) dy < / 1o — 9)ll 1 B | 1(8)] dy
]Rn

LP (B(:E:T)) R

— / 12l 3oy 2 (9)
Rn

and

1f1 % follaMyg iy = Seuléle(T)Hfl * fQHLp(B(:t,r))HLQ(QOO)

< sup / W) 2l (Bamyr) | 1(3)] dy
]Rn LQ(0,00)

< SURBL/Hw(r)HfQHLp(B(:v—y,r))HLG(07OO)|f1(y)|dy < fillz 1f2llGMpp .y -
A R
Remark 3. In inequality (3.4), one cannot replace the global space GMpg () by the local

space LMy ,,(.y even if one adds a constant factor independent of f; and fo to the right-hand side.
In particular, for any 0 < p < oo, A > 0, and any A > 0, the inequality

11 fallagy < Allfallz.llf2llLary (3.6)

with arbitrary fi € L, and fa € LM;‘ fails, as is shown in the following example.!

L This example was proposed by E.D. Nursultanov.
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AN ANALOG OF YOUNG’S INEQUALITY FOR CONVOLUTIONS 113
Let n =1 and
fik = X[—k—1,—k]> for = X[k, k+1]> ke N.
Then
el =1, farlle, =1 farllzay < igg?“_k\\fzkhp(—m) <k

On the other hand, for 0 < x < 1/2,

(f1k * foar)(2) _/flk(x_y)f%(y)dy— / dy = / dy >

Rn [k, k+1]N(z—[—k—1,—k]) [k+a,k+1]

and, for all k € N,

fie * forllary = supr = fue* farllzy00) = Ik * Farll, 072 > 272
P>l

Replacing f1 with fi; and fo with for in (3.6), we see that this inequality is impossible.

Remark 4. Note that in the case of the spaces Hg, for any A > 0 and any pi, p2, and p
satisfying condition (3.2), the following direct analog of Young’s inequality holds:

Ifr* fallgr = sup  [RTMAF(fr* f2)ll, =  sup Ihl Mlf1x A follz,
P heRn, h£0 hER™, ht

< ((_swn AT Rl )il =161l el

€R™, h£0

(it is assumed here that o € N and o > ). However, in the case of the global spaces G Mg ..y, for
any pi, p2, and p satisfying condition (3.2), the direct analog of Young’s inequality

1f1 % fallenyg iy < I f1llLp, [1f2llGM,,0 w0

fails for p; > 1 even if one adds a constant factor independent of f; and f5 to the right-hand side.
In particular, for any A > 0, the inequality

11 * follary < Allfullr,, [ f2llary, (3.7)

with arbitrary f1 € Ly, and fo € M;‘Q fails to hold.

This is obvious if n/p < A < n/ps. Indeed, it follows from (3.7) that f1 * fa € Mz;\ with A > n/p,
which implies that the convolution fi * fa is equivalent to zero on R™ for all f; € L, and f3 € M;‘Q,
but this is impossible.

For n = 1 and any 0 < A < 1/p, this is confirmed by the following example.? Let a = 1/(Ap2) and

fl = Z k_l/pl (ln k‘)_2/p1X[7ka,1’,ka+1]7 f2 = Z X[ko‘,koﬂ*l}‘
k=2 k=2

It is obvious that f; € L, and fa ¢ L,,. Let us prove that fy € MI;\Q. Indeed, if z < —2r, then
1f2llzp, (z—retr) = 0. If r < 1, then, for all z € R,

T_AHfQHL;DQ(ﬂC—T,:E-i-r) S ’I”_A(27")1/p2 S 2

2This example was also proposed by E.D. Nursultanov.
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If r >1and > 2r, then z —r — 1 > 0 and, since a’P2 — b2 < (a — b)>‘1"2 for a > b > 0 because
of the inequality Aps < 1, we have

1/p2 1/p2
T_AHfQHLpQ (z—r,z+1) < 7a_>\ ( Z 1) = T_A < Z 1>
(z—r—1) (:tJrr))‘PQ

ke41>z—r, koe<z+r AP2 <<
= M@+ — (@ —r = 1 1) <N (@2 1) )P < (3 ) < g

Finally, if » > 1 and —r < x < 2r, then

1/P2
r M fall Ly @ty < 7 M2l 0,80 < FA( > 1)

k><3r
< 7“_>‘((3?”)>‘p2 + 1)1/192 < (3>\p2 + 1)1/172 < 4.

Thus,

_ -2
If2llary, = Sup supr 120l Ly (@ —ryatr)y < 0
At the same time, for 0 < x < 1 and k¢ <y < k*+1, we have -k — 1 <z —y < —k*+1;
therefore,

k41

(hre @)=Y [ A=y =YK k) = o,
k=2 P k=2

Hence, ||y % fallygy = o0 and, more generally, ||f1 + fallary = o0 for all 0 < ¢ < oo and 0 < v < 1/g.
For this reason, in the following statement we additionally assume that fi € L,, and fo € Ly,.

Theorem 2. Let

L<pupspscs,  BE<Oh<o0  O<aparsl (3.8)
and 1 1 1 1 1
nm T mTmer 6t & 39
Let, next, wy € Qp,9,, w2 € Qp,p,, and
w(r) = wi* (rwy?(r), r > 0. (3.10)

Then w € Qpg; for all f, € GM,,
everywhere on R™; and

wowswn() V Lpey k= 1,2, the convolution fy * fo exists almost

1— 1—
1% Pollonsoer < WAalhe o o AN RS, Il (3.11)

Let us distinguish the following particular cases of inequality (3.11).

1. If a3 = 0 and p; = 1, then po = p, ag = 1, 2 = 0, and wa(-) = w(-), and this is
inequality (3.4). In this case, it suffices to assume that fo € GMpg .y (For p > 1, the additional
assumption fy € L, is redundant.)
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2. If g = 0 and p; > 1, then py < p, ay = pa/p, and O3 = (p2/p)f, where p; < 6 < oo,
w2() — wp/pQ(.), and

1% Follnty ey < il NI |l (3.12)

(2 /p)0,wP/P2 ()

for w € Q.
3.0 =0y =0 =00,0 <A\ <n/fpi, 0 < Ay < nfpy, wi(r) =r~M, and wy(r) = r~*2, then
w(r) = p(editazdz) and

Lf1 % foll yjorraranra < 2%, 1AL ”fQHOQAQHfQHi . (3.13)
M. M. P P
P Pl ! 2

According to this inequality, for fixed p1, p2, A1, and Ao, the maximum value of the parameter X\ for
which f1 * fy € Mz;\ is equal to max{p1A1/p,p2A2/p} (the maximum is attained either for oy = 0
or for ag = 0).

4. If ) = 0y = 00, a1 = 0, ay = pa/p, and wo(r) = r~—*2, then § = oo, w(r) = r~P2/P)X2 and
1—
7% Fallygparma < Illag, 12205250 N2l 1 (3.14)

for 0 < Ao < n/ps.
Proof of Theorem 2. 1. The fact that w € €2,9 was verified in the proof of Lemma 2.

2. Below, without loss of generality, we will assume that f; and fs are nonnegative functions.

First, we prove inequality (3.12). Note that the condition w € €,y implies the inclusion
wP/P e Qpy (o /p)o- Since pa/p + p2/p| = 1 according to (3.9), applying Holder’s inequality with
the exponents p; and p) yields3

(frx f2)(2) = (fox f1)(2 /f2 z—y)fiy )dy—/(fl( ) fo(z — y)P2/P) folz — y)P2/P1 dy

R”l
<A@z =92 2z =) ”/’“H @)
_ Hfl Vf2(z —y P2/PHLP e ”f2HP2/P1 (3.15)

for all z € R™.
Since p; < p, we can apply the generalized Minkowski inequality for integrals and find that

11 Falley sy < 1A F2Gz = 907y oL, ey M2, o)
< F2(z = 977, ) AW, e 1200
= WA e p—y Fr W],y Hlell e
= 15 ey O, e ||f2||2ja§£) (3.16)

for all x € R™ and r > 0. (If » = oo, this inequality coincides with inequality (3.1), and we obtain
its short proof.)

3As usual, p] denotes the conjugate exponent of p1 (1/p1 + 1/py = 1).
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Since p; < 0, another application of the generalized Minkowski inequality for integrals yields

)11 % oy ot llzy00) < [N Kby O ],y IH2IE 8
ol (GO VAT PAETRety e ATCO /PRSI e P
< H(w<r>p/p2HfQHL,,Q(B@,y,r)))”/pﬁ(y)HLe,m,m)HLp o IF2 s
= et 1ol oo 1LY 000 O], g 1521208

P1

p2/p
p/p 1-p2/p
. (5;@\\100“) 2||f2|le2<B<u,r>>HLW,,)Q,T@,OO)) LA 2y L P20

_ INTRIEL 1= pz/p 3.17
= lF1llz,, eyl f2llGar M oty ) yrally, (3.17)
for all x € R™, which implies inequality (3.12).
3. Let
Q Q 0 0
fr=" =20 m=E =B ) =70, el) = wf0), >0
By virtue of (3.9) and (3.10),
1
B+ B2 =1, @—i—@:E, vfl('r)ng(r):w(r), r > 0.
no 2

Using inequality (2.6) with p; = ps = p, the parameters 6; and 02 replaced by 11 and 7, the
parameters a; and ag replaced by 1 and 2, and the functions wi (r) and wy(r) replaced by vy (r)
and vg(r), we obtain

11 % follantyg ) < 11 * Fallhy 11 % fallghy

Mpny 109 pngsva ()

Now, applying inequality (3.12) with 6 replaced by 7 and w replaced by vy to the second factor
and the same inequality with f; and fs interchanged, 6 replaced by 71, and w replaced by v to the
first factor, we see that

11 Fllontyguy < (I, 111G

P1,P1M1/P>vy

p2/p
(”fl”Lm”fQH p/p2 (.

pz p2n2/Psvy

1— aip/p1 _ azp/p2
= (el IAIEE o IAHEP )Y (e VN, Il

1—py /p\1P/P1
o )

_ azp/p2
I 15,77

_ a1 l—a1 1—a2
= ”leGMplel,w( Hfl”Lp ”fZHGMPQQQ’wQ(J”f2HLp2 )

since in view of (3.9) we have

<1_&)%+%_1_a1, am(l__)%_l_% O
P P2 P p /) p2
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If f € GMpg .y (in particular, if f € MI;\), then this does not generally imply that f € L,. For
example, if 0 < A\ < n/p, then |2|*~"/P ¢ M, but |z AP ¢ L,
In this connection, consider the modified global Morrey-type spaces

GMpg () = GMpo,w() N Ly
with the quasinorm

1w, .. = max{lf a1, }

including the spaces
2 A
My = My N Ly,

with the quasinorm

£ 1155 = max{[1fllay 1Flz, }-

Corollary 1. Under the hypotheses of Theorem 2,

1% Pollamy, o, < Willam, . W elam, (318)

Proof. It suffices to notice that according to inequalities (3.11) and (3.1),

v+ fellentyg ey < 1fillam, 172/l 3,

61,w1(-) 2602, wa ()

and

<Al =~ — :
1fox follz, < fillem, o, IllEm,, o O

If0 =0, =0 =00,0<X\ <n/p;, 0< Ay <n/py, wi(r) = r~™M, and wa(r) = r~*2, then
inequality (3.18) takes the form

[ f1 = f2”]\2§1>‘1+a2>‘2 < Hfl”]@;ll ”f2H]\7[p*22~ (3.19)

Note that the space ]\Aig‘ possesses the monotonicity property with respect to the parameter A:
if 0 <A< u<n/p, then

7 A
M and | fllgy < Illg

Indeed,

1715 = mesx{sup sup 171, oty 111,060

= maX{ sup sup 7 M| fllz, By sup sup v M Flln, (B HfHLp(R")}
0<r<1 zeR"” r>1 zeR"

—p — _
SmaX{OiliEl sup £l 2, (B@.r)s HfHLp(R")} 11| e

Therefore, the “best” inequality among those of the form (3.19) is the inequality

PIAL P2A2 }

I llgy < Wil Il gy with A= max] 222, 22
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For comparison, we present an analogous inequality for the Nikol’skii spaces. For any p1, po,
and p satisfying condition (3.2) and for any A1, Ay > 0,

1% Fall o < Il a2l e (320)

It is assumed that in the definition of the Nikol’skii spaces, o1 > A1 and o9 > Ay on the right-hand
side and o = 01 + 02 on the left-hand side. Inequality (3.20) is obtained by an application of
Young’s inequality for convolutions (3.1) to the equality A7*T72(f1 x f2) = (AT f1) * (AT? f2).

4. ANALOG OF YOUNG’S INEQUALITY FOR TRUNCATED CONVOLUTIONS
IN THE CASE OF GENERAL GLOBAL MORREY-TYPE SPACES

Let © C R™ be an open set and 0 < p,0 < co. For a function f defined on 2, we will denote
by f¢ its extension by zero to R"™. For w € Qy, by definition, f € LM, ,,.)(22) if f° € LMyp ) (R™)
and, accordingly, for w € Qpg, f € GMpyg .y (2) if f© € GMpg ) (R™). In this case,

1120ty @) = 15 2aty sy = [l F @080, | 0,00
and
HfHGMp@’w(,)(Q) = HfOHGMp@’w(,)(]R") = SeuﬂglHw(r)HfHLp(QﬂB(:v,r))HLO(QOO)'

In the case of local spaces LM,g ,,(.)(2), it is assumed that 0 € Q.
Note that if the set € is bounded, then

LMpG,w(-)(Q) C GMpG,w(-)(Q) - LP(Q)

and

||f||LMp97w(4)(Q) ||f||GMp9,w(.)(Q)

; 1,0 < ; (4.1)

1z, @) <
p() ”w”Le(m,oo) ”w”Le(T’%OO)
where

ry = inf{r > 0: Q C B(0,r)}, ro = diam Q = inginf{r >0: QC B(z,r)}.
e
Consider a “truncated” convolution

(Fu* fo)ou (@ /flx— Vfaly

for x € Q1, where Q1,Qs C R™ are measurable sets, fo is a measurable function on (25, and f; is a
measurable function on 1 — Qo = {x —y: z € Oy, y € Qo }.

Let f5 be the zero extension of fs to R™ \ Q9 and f7 be the zero extension of f; to R™\ (21 — s).
Then, for x € Qq,

(f1* f2)a, (= /f1x— ) f2(y dy—/f1$— ) f2(y dy—/f1$— Vs (y)dy = (fT * f3)(x).

Since
1Tl Ly, &) = il @u-02)s T lGag 0 @) = If1llGMg 00 (00 —00)5
Hf2o”Lp1(Rn) = HfIHLpl(QQ)7 ”f2OHGMpg’w()(Rn) - Hf2”GMp9,w(,)(Qg)7

and

H(fl * f2)Q2”GMp9,w(.)(Q1) = Hff * f;”GMpg,w(.)(Ql) < Hff * fQOHGMpgyw(J(R”)v
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it follows that under the hypotheses of Theorem 2, for all f1 € GMp, g, 4, (. (1 — Q2) N Ly, (21 — Qo)
and fo € GMp,p,.u,()(Q22) N Ly, (22), the convolution (f1 * fa)o, exists almost everywhere
on 27 and

1(f1 % f2)azllanmg iy @) S T * f2llanyg . &)

1— 1
<0 o o I G IS IS
1— 1—
= 1A, o o oo o 1203 Il Ty (42)

If the sets ©; and Q9 are bounded, then inequalities (4.2) and (4.1) imply that there exists a
¢ > 0, depending only on 61, 05, diam 2, diam Qs, wy, and ws, such that the following inequality
is valid for all f; € GMplal,wl(')(Ql — QQ) N Lp1 (Ql — Qg) and fo € GMngg,w2(~) (QQ) N Lp2 (QQ)Z

1(f1 % f2)aallamg iy @0) < lfillanm, g, 0, o @—a) 12l o ) @2)- (4.3)

If oy = p1/p, ag =0, 0y = (p1/p)f, and wi(-) = wP/P1(-), then inequality (4.2) takes the form

1—
1Cf % F2)eallans g o ) < IALIEHY (o filL,] I ol ol (44)

p1,(p1/p)0,wP/P1(-

Tracing the proof of Theorem 2, we can sharpen this estimate.

Theorem 3. Let Qq,Q9 C R™ be measurable sets,

1 1
1 <p1,p2 <p< o0, —+ — =

1
_+17 p2§‘9§00a
P1 p2 p

and w € Cyg.
Then the convolution (f1 * f2)q, ezists almost everywhere on Q1 and

(1 f2)eallaay, @)

p1/P 1-p1/p
< (swlilos, oy meonn)  (S0Ulye0n) ol (09

y€EQs p1,(P1/P €M

for all measurable functions fi on Q1 — Qo and fo on Qo for which the right-hand side of this
nequality is finite.

Proof. Just as in the proof of Theorem 2, we assume without loss of generality that fi; and fo
are nonnegative functions.

Instead of inequality (3.15), we obtain

(f1* f2)a, (2 /fl 2=y f(y)dy < || fo(y) fi(z —y pl/pHLm ) 1f1(z—y pl/pQH

= iz =9, o 1A - (4.6)

Since
(QNB(x,r) —y= (U —y)N(Bx,7)—y) = (21 —y) N B(x —y,r),
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instead of inequality (3.16) we obtain

11 % Saullz@unmery < |[£200 006 = 0Pl on AL,

Ly, - (Q1NB(x,r))

1-p1/p
< 121z = 9Py, @) |z, - ey ( sup |1 ||Lm(z_m>)
z 1

< HHfl Z — )pl/pHLp 2(1NB(z,r)) f2 HLp2 J(QQ) sup”le _pl/pﬂg)
/ —p1/
o HHfl |ﬁlpf(ﬂ1 —y)NB(z—y,r) )f2 )HL 4(Q2) SUP ||f1HLpp(1szQ) (4.7)
Finally, instead of inequality (3.17), we find that for all z € R"
H’LU H(fl*fQ)QQHLp QlﬂBaf:r)HLGOOO)
/ 1-
HH p/melHLpz (1 =y)NB(z—y,r)) )pl pf2( HLpg,y(R") 0,r(0,00) Supr1H pl/p&b)

< et 11, el 00020, g SRR
p1 p
S;;&(f;ﬂgl [l 1l -srmen L, /,,Mm)) 1£20) 10 SR I P
p1/P 1-p1/p
— (yseugz)Q||f1HGMp o /p)ewp/pl(.)(nly)) <ZS€113E>1||leL,,1 92)> I f2llz,, (922)+ (4.8)
which implies inequality (4.5). O

Remark 5. Since

(hre @) = [ fole =)l dv (4.9)

z—9

this does not allow us to obtain a variant of inequality (4.5) in which 4, f; and Q, fy are
interchanged.

Remark 6. Theorem 3 remains valid if we define the global Morrey-type spaces G Mg .,(.) as
the spaces of all measurable functions f on 2 such that

||f||GMp9,w(')(Q) = igg“w(r)HfHLp(QﬂB(a:,T)) HLg(O,oo) < 0.

In the proof, only the arguments used in the derivation of inequality (4.8) should be slightly
changed. In this case, for all © € €y,

|w(r)[|(f1 = fQ)QQHLp(QlﬂB(ac,r))HLG(QOO)

p1/p
< p/p1 1-p1/p
;g@(uggp el (@m0 \\L(pl/p)gT(ooo>) SUIAillL, () 2Ly, 02
p1/p 1-p1/p
= | su su , 4.10
(oIl o) (s lAlienn ) Il (4.10)
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which implies inequality (4.5) with

p1/p p1/p
su instead of su _ .
(yeprIHGM (m/p)ewp/mu(ﬂly)) (yeS%Hlech (w1 /m0,uwP/P1 () S8 y)>

Remark 7. All the results of this section remain valid if we replace the balls B(0,r) and
B(z,7) in Definition 1 of the spaces LM, () and GMyg .y with the cubes Q(0,7) and Q(z,7) =
{y € R": |z; — y;| < r}, respectively.

5. ANALOG OF YOUNG’S INEQUALITY FOR MORREY-TYPE
SPACES OF PERIODIC FUNCTIONS

Definition 3. Let 0 < p,0 < oo and T" > 0, and let w be a nonnegative Lebesgue measurable
function on the interval (0,7'/2). The periodic global Morrey-type space GM p@ w() is the space of
all Lebesgue measurable T-periodic functions f on R™ with finite quasinorm

HfH*GMpgyw(J = sup Hw(r)||f||Lp(Q(x7T))HL9(07T/2)7
TEQT

where Qr = Q(0,7/2).

It is assumed that w € €27,. This means that the zero extension w® of w to (T/2,00) belongs

to ng.
Note that
111Gty 2 Hw(T)HfHLp(Q(eT/ZL,r))HLQ(T/ZLT/Q) > |1 fllL,@Er/ar/anllwl Ly r/am/2)s
where € = (e1,...,65) and ¢ = 1 or —1 for all j =1,...,n, which implies that

1/p
HfHEp = HfHL;D(QT) = ( Z HfHIzp(Q(sT/4,T/4))> < 2n/p”w”291(T/47T/2)HfH*GMp@’w(,)' (5~1)

e:egje{-1,1}

Lemma 3. Forall 0<p,0<oo, T >0, weN, and f € GM

po> p9 w(-)?

Wttty = S0 [0 0 | o 272y (5.2)

Proof The inequality || f HGMpe,w< < |If ”GMpe,w(.> is obvious. Let us prove the inequality

< . To this end, for any £ € R", set
9 w ) GM w(-)

1(§) = Hw ‘fHLp (Q(&m) HL(, (0,T/2)"

If £ € Qr, then we obviously have I(§) < HfH*GMpe e Now, let £ € 0Qr. Consider a sequence of
points & € Qr, k € N, such that £, — £ as k — co. Then, for any function f € GM;(, w() and any
0 <r<T/2, we have

Jim (f 1z, @) = Iflzy@en)
and, since the function f is periodic,

1@y < Il @2y = 1L, @)
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for all £ € N. Since w € Ly(e,T/2) for every 0 < ¢ < T/2, we can apply Lebesgue’s dominated
convergence theorem to obtain

i [l e Ly ez = 10Oz @ |y ez
Hence, for all £ € 0Qr,

1(§) = Oi}ip [w)I Nz, e )HLG(E T/2) = 0521;/2 SUPH“’ Pl @er )HLG(E T/2)

= Supr(T)HfHLp(Q(fJ’))HLG(O,T/2) < sup Hw(T)HfHLp(Q(Eﬂ“))HLQ(O,T/Q) = [ FllGnt -
keN z€Qr

This implies that

S GEI (53)
z€QT

Let, finally, £ ¢ Q7. Let k = (k1,...,k,) with integers k; such that —T/2 < & + k;T < T/2;
hence, £ + kT € Qr. Since f is periodic,

1fWDzp@eery = 1f W+ ED) L) = I1f (DL, @errrr);

therefore, for any ¢ ¢ @,

I(§) =I1(§+kT) < sz&](w).

This and inequality (5.3) imply that
*% _ *
0 = 30 106) < [ O

Let us present analogs of the results of the previous section for the convolution of T-periodic
functions f1 and fs:

(f1* f2) (= /f1 z—1y)f(y)dy, x=eR™

Theorem 4. Suppose that the hypotheses of Theorem 2 concerning the numerical parameters

P1, P2, D, 01, 02, 0, a1, and as are satisfied. Let, next, wi € Qplé’l’ wo € sz@g’ and
(o7 (0% T
w(r) = wi* (rwy?(r), 0<r< 3 (5.4)
Then w € Q;e, for all fy, € GM* O wn() () Ly, , k= 1,2, the convolution f1 * fa exists almost

everywhere on R™; and

ORI fallEa,,,, 0 0) (I£20E,,) % (55)

1% Folléngygne, < (illEas, o,

Proof. We will follow the scheme of proof of Theorem 2. First, we prove an analog of inequal-
ity (3.12) for T-periodic functions f; and fy, namely,

* p1/p * 1- *
11 % Fallngygg, < (il ) WAL T A0, (5.6)

p1.(p1/P)0,wP/P1 ()

Without loss of generality, we will assume that the functions f; and fs are nonnegative.
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To obtain an analog of inequality (3.15), we should replace R™ by @Qr and take into account
that for periodic functions

/P /p; x /P
[1Ge =95l o = WA - qn = AL, Gy = (11E,,)™

As a result, we obtain

(fix f2)(2) < | o) fr(z —y pl/pHLp (@) (||fl||Lpl)pl/p2

To get an analog of inequality (3.16), we should replace B(x,r) by Q(x,r) and R™ by Qr; this
leads to the inequality

* 1-
”fl *f2HLp Qz,r)) = HHfl ‘Iz;/(zzgx y7T))f2(y)HLp2’y(QT)(”leLpl) pl/p'

Finally, to obtain an analog of inequality (3.17), we should replace B(x, ) by Q(z,r), R" by Qr,
and Ly(0,00) by Lg(0,7/2). Then, for all z € Qr, we have

Hw("”)Hfl * f2HLp(Q(4r,r)) HLQ(O,T/Z)

/ x  \1-p1/
< [l Wileaeu 5, 0rm B0, o (15,)

/ i * * 1-p1/p
< ((sup a1t o) IR0, (1A1,)

u€Qor HL( 1/p)0,r

v/ .
< (Ifillens ) A T,

according to Lemma 3, which implies inequality (5.6).
For measurable T-periodic functions f; and fa, equality (4.9) reduces to

(p1/p)0,wP/P1 (")

(f1* f2)a.(x /f2 r—y)f1(y) dy;

therefore, we can interchange fi and fo in inequality (5.6). This allows us to obtain inequality (5.5)
by using step 3 in the proof of Theorem 2. The only change is that we should apply inequality (5.6)
instead of (3.12). O

Corollary 2. There exists a ¢ > 0, depending on p1, pa, 01, 02, a1, as, wi, and wa, such that
under the hypotheses of Theorem 4

1fux Felltng, o, < cllfillin, o oo fllEn (5.7)

forall fr € GM] , wn () and foe GM p2927w2()
Proof. It suffices to apply inequality (5.1) to inequality (5.5); this yields inequality (5.7) with

p101,wy (") p202,wa (")

’Oq 1 as—1 0

¢ = 2"Jwi (T/4,T/2) ng\ o (T/4,T/2)"

Consider separately the periodic Morrey space (sz‘)*, where 0 < A < n/pand 0 < p < o0,
which consists of all T-periodic functions f € L}DOC(R”) such that

-
13y = sup sup 2| fllL, Q)
z€QT 0<r<T/2

is finite.
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Note that

T —A
113 = (3) Ilsaeo

hence,

T A
191, = lzpi0n < (5 ) 103y 6.9

In addition, (M;2)* C (Mp*)* for 0 < Ay < A2 < n/p, and

T >\2—>\1
< (3) 10

For the spaces (Mg)*, we obtain the following results.
Corollary 3. Let

1 1 1
1<p,pp<p<oo, —4—=-41, 0<N<—,  0<i<—,
p1 b2 b b1 b2
1
0§Oz1,0&2§1, %‘1’%:_
b1 D2 b

Then, for all f1 € (Mgg\ll)* and fo € (MI;\;)*, the convolution f1 x fo exists almost everywhere
on R™ and

2% £l nsronsa < ellfull oy el (59

B T )\1(17011)4»)\2(17012) - . T n
Cc = 5 S Imax s B .

Proof. Inequality (5.9) follows from inequalities (5.5) and (5.8). If 7" < 2, then obviously
¢ <1, while if T' > 2, then, according to the assumptions on the parameters,

where

1

T\s et ten (i =(G1+50)) oy
c<<_> :<_> :(_) . O

2 2 2

Corollary 4. Let
1 1 1

1<pLpp<p<oo, —+—=-+41 0<M<—, 0<A<-—.
p1 D2 p p1 D2
Then
A1) * Ao\ * A\ *
(Mph)" N (Mp2)" € (M), (5.10)
where
AMpr A
A_max{l_pl, _P} (5.11)
p D

Proof. It suffices to apply inequality (5.9) and take into account that the maximum of the
expression a3 A1 + as Ay under the conditions 0 < ag, a0 < 1 and aq/p1 + az/p2 = 1/p is equal to
A1p1/p if Aip1 > Aopo (it is attained for ag = p1/p and ay = 0) and to Aape/p if Aepa > Aipy (it is
attained for ay = 0 and ae = po/p). O
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