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Mathematical Features

• Hadamard matrix

• quadrature mirror filter

• low crest factor array; every row of every PONS

matrix has the uniform crest factor
√
2

• yields optimal uncertainty principle bounds

• excellent correlation properties
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Mathematical Features II

• Each row of every PONS matrix is an energy spread-

ing second order Reed-Muller codeword

• unlike the Walsh-Hadamard matrices, all PONS

matrices are symmetric and all even-size PONS

matrices have equal row (hence column) sums
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Why Spread Energy?

• Covert transmission - signals appear as white noise

• Naturally low probability of intercept, low probabil-

ity of detection, anti-jam (LPI/LPD/AJ) waveforms

• Robust transmission - gradual signal degradation

when corrupted

• Signal can face extreme interference and usable

data can still be reconstructed
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Computational Behavior

• fast transform: 2log2n operations per sample for

window size n

• integer computations; no floating point operations

• in-place algorithm

• highly parallelizable

• FPGA built with minimal # of gates

• Algorithms operate to compress and decompress

signals in real time
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Shapiro Polynomials
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Pn and Qn are polynomials of degree 2n -1 with 

coeffients ±1.
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Properties of Shapiro Polynomials
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(same for Qn)

This choice of ±1’s gives an excellent bound ( 2) 

for the “peak factor” (peak-to-average ratio), 
thereby spreading the “energy” of these 
polynomials almost equally around the unit circle.



Shapiro Sequences
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Three ways of thinking of these sequences:

(a) sequences of ±1’s of length 2n

(b) coefficients of polynomials
(c) values of piecewise constant functions on [-π,π]

Note: Pn and Qn are orthogonal in the sense of (c)



Shapiro Sequences are Incomplete

Want:

A collection of functions of type (c) which form a 

basis for length 2n digital signals.

Have:

2 such functions for each n

Need:

2
n
 such functions for each n



PONS Sequences
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Mathematical Properties
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Walsh Functions

The Walsh functions are

• piecewise constant

• take on only the values ±1

• form a basis

These properties make the Walsh functions
useful in

• signal processing

• digital filtering

• communications

• coding

This usefulness is hampered because

• Walsh polynomials have the worst possible 
crest factor

• they are not quadrature mirror filters

• their Fourier transforms decay as slowly as 
possible



PONS = Walsh+

PONS satisfies all useful Walsh properties plus

• PONS polynomials have uniformly low crest 
factor

• they are quadrature mirror filters

• PONS Fourier transforms decay as quickly as 
possible

• they are optimal w.r.t. the Global Uncertainty 
Principle



Average Correlation Magnitudes
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Energy Spreading in
Mathematical Terms
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Energy Spreading — Theorems
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