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Short History

Higher integrability of the gradient or Boyarsky�Meyers estimate

has the form

∫

Ω

|∇u|2+δdx 6 C

∫

Ω

|f |2+δ dx ,

where u is a solution to a boundary value problem for the seond

order linear ellipti equation with �right-hand side� f , in bounded

strongly Lipshitz domain Ω and for p-Laplaian

∫

Ω

|∇u|p+δdx 6 C

∫

Ω

|f |p
′(1+δ/p) dx ,

1

p
+

1

p′
= 1.
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Short History

The following paper

[1℄ B.V. Bojarskii, Generalized solutions to a system of �rst-order

di�erential equations of ellipti type with disontinuous

oe�ients // Math. Sbornik, V. 43(85) (4, 1957). P. 451�503.

is the �rst publiation in the topi. In this artile the author showed,

that the gradient of the solution to the Dirihlet problem for the

divergent uniformly ellipti equations with measurable oe�ients

in bounded domain, is integrable in the power greater than two.
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Short History

Later, in the multidimensional ase for equations of the same type,

the inreased summability of the gradient of the solution of the

Dirihlet problem in a domain with a su�iently regular boundary

was established in the work

[2℄ N. G. Meyers, An Lp�estimate for the gradient of solutions of

seond order ellipti divergene equations // Annali della Suola

Normale Superiore di Pisa, Classe di Sienze 3-e s�erie. T. 17, (3,

1963). P. 189�206.

Subsequently, similar results were obtained for the Neumann

problem.
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Short History

We also note that higher integrability of the gradient of solutions to

the Dirihlet problem in a domain with a Lipshitz boundary for the

p-Laplae equation with a variable exponent p(x) satisfying speial

onditions on the modulus of ontinuity was obtained in the paper

[3℄ V.V. Zhikov, On some Variational Problems // Russian Journal

of Mathematial physis, V. 5 (1, 1997). P. 105�116.

[4℄V. V. Zhikov, Meyers-type estimates for solving the nonlinear

Stokes system, Di�er. Equ., 33:1 (1997), 108�115.
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Short History

Later, in the papers

[5℄ E. Aerbi, G. Mingione. Gradient estimates for the

p(x)-Laplaian system. // J. Reine Angew. Math. 2005. V. 584. P.

117�148.

[6℄ L. Diening, S. Shwarzsaher. Global gradient estimates for the

p(.)-Laplaian. // Nonlinear Anal. 2014. V. 106. P. 70�85.

this result was strengthened and extended to systems of ellipti

equations with variable summability exponent.

Anna Bali et al onsider funtions of the Mukenhoupt lass.
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Short History

For the Laplae equation, the mixed Zaremba problem formulated

by W. Wirtinger, in a three-dimensional bounded domain with a

smooth boundary and inhomogeneous Dirihlet and Neumann

onditions was �rst onsidered in the work

[7℄ Zaremba, S.: Sur un probl�eme mixte relatif �a l'�equation de

Laplae (Frenh). Bulletin de l'Aad�emie des sienes de Craovie,

Classe des sienes math�ematiques et naturelles, serie A, 313�344

(1910)

The lassial solvability of the problem was established by the

methods of potential theory under the assumption that the

boundary of the open set on whih the Neumann data are given

also has a ertain smoothness.
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Short History

The study of the properties of solutions to the Zaremba problem for

seond-order ellipti equations with variable regular oe�ients

goes bak to the work

[8℄ G. Fihera. Sul problema misto per le equazioni lineari alle

derivate parziali del seondo ordine di tipo ellittio (Italian) // Rev.

Roumaine Math. Pures Appl. 1964. V. 9. P. 3�9.

In it, in partiular, it was established that at the juntion of the

Dirihlet and Neumann data, the smoothness of the solutions is

lost.
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Short History

Homogenization of rapidly osillating Zaremba problem have been

studied in the papers

[10℄ A. Damlamian, Li Ta-Tsien (Li Daqian). Boundary

Homogenization for Ellipti Problems. // J.Math.Pure et Appl.

1987. V. 66. P. 351�361.

[11℄ G.A. Chehkin. On Boundary � Value Problems for a seond

� order Ellipti Equation with Osillating Boundary Conditions. //

Nonlassial Partial Di�erential Equations, Ed. Vladimir N.Vragov.

Novosibirsk: IM SOAN SSSR, 1988, P. 95�104. (Reported in

Referent. Math., 1989, 12B442, p.62)

[12℄ M. Lobo, M.E. P�erez. Asymptoti Behavior of an Elasti Body

With a Surfae Having Small Stuk Regions. // Math Modelling

Numerial Anal. V. 22. � 4. 1988. P. 609�624.
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Short History

In the papers

[14℄ Yu.A. Alkhutov, G.A. Chehkin. Inreased Integrability of the

Gradient of the Solution to the Zaremba Problem for the Poisson

Equation. // Russian Aademy of Sienies. Doklady Mathematis

103 (2, 2021): 69�71.

[15℄ Yu.A. Alkhutov, G.A. Chehkin, The Meyer's Estimate of

Solutions to Zaremba Problem for Seond-order Ellipti Equations

in Divergent Form // CR M�eanique, T. 349 (2, 2021). P. 299�304.

for the linear ellipti equation of the seond order, an estimate is

obtained for the higher integrability of the gradient of solutions to

the Zaremba problem in a domain with a Lipshitz boundary and a

rapid hange of the Dirihlet and Neumann boundary onditions.
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Short History

[16℄ Yu.A. Alkhutov, G.A. Chehkin, V.G. Maz'ya. On the

Boyarsky�Meyers Estimate of a Solution to the Zaremba Problem

// Arh Rational Meh Anal, V. 245, No 2 (2022). P. 1197�1211.

[17℄ Yu.A. Alkhutov, G.A. Chehkin. On Higher Integrability of the

Gradient of a Solution to the Zaremba Problem for p(·)-Laplae
Equation in a Plane Domain // Lobahevskii Journal of

Mathematis.- 2023.- v. 44, No 8.- p. 3196�3205.
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Linear equations

Linear equation
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Setting of the problem

We prove estimates of solutions to the Zaremba problem for ellipti

equation in bounded Lipshitz domain D ∈ R
n
, where n > 1, of the

form

Lu := div(a(x)∇u) (1)

with uniformly ellipti measurable and symmetri matrix

a(x) = {aij(x)}, i.e. aij = aji and

α−1|ξ|2 6
n

∑

i ,j=1

aij(x)ξiξj 6 α|ξ|2 for almost all x ∈ D and all ξ ∈ R
n.

(2)

We assume that F ⊂ ∂D is losed and G = ∂D \ F .
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Setting of the problem

Consider the Zaremba problem







Lu = l in D,
u = 0 on F ,
∂u
∂ν = 0 on G ,

(3)

where

∂u
∂ν is the outer onormal derivative of u, and l is a linear

funtional on W 1
2 (D,F ), the set of funtions from W 1

2 (D) with
zero trae on F .
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Setting of the problem

By the solution of the problem (3) we mean the funtion

u ∈ W 1
2 (D,F ) for whih the integral identity

∫

D

a∇u · ∇ϕ dx =

∫

D

f · ∇ϕ dx (4)

holds for all test-funtions ϕ ∈ W 1
2 (D,F ), the omponents of the

vetor-funtion f = (f1, . . . , fn) belong to L2(D). Here f appears

from the representation of the funtional l .
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Auxiliaries

We are interested in the question of higher integrability of the

gradient of solutions to the problem (3). The onditions on the

struture of the set of the Dirihlet data support F playes the key

role.

For the ompat K ⊂ R
n
we de�ne the apaity Cq(K ), 1 < q < n,

by the formula

Cq(K ) = inf

{
∫

Rn

|∇ϕ|q dx : ϕ ∈ C∞
0 (Rn), ϕ > 1 on K

}

. (5)
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Auxiliaries

Suppose Bx0
r is an open ball of the radius r entered in x0, and

mesn−1(E ) is (n − 1)-measure of the set E . Assume also that

q = 2n/(n+ 2) as n > 2 and q = 3/2 as n = 2. We suppose one of

the following onditions is ful�lled: for an arbitrary point x0 ∈ F as

r 6 r0 the inequality

Cq(F ∩ B
x0
r ) > c0r

n−q
(6)

holds true or the inequality

mesn−1(F ∩ B
x0
r ) > c0r

n−1
(7)

holds, the positive onstant c0 does not depend on x0 and r .

Condition (7) is universal (even for nonlinear equations).
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Auxiliaries

The ondition (7) is stronger, than (6), but it is learer. Note that

under any of these onditions, the funtions v ∈ W 1
2 (D,F ) satisfy

the Friedrihs inequality

∫

D

v2 dx 6 K

∫

D

|∇v |2 dx ,

whih, by the Lax-Milgram theorem, implies the unique solvability

of the problem (3).
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Main result

Theorem

If f ∈ L2+δ0(D), where δ0 > 0, then there exist positive onstants

δ(n, δ0) < δ0 and C , suh that for a solution to the problem (3) the

estimate

∫

D

|∇u|2+δdx 6 C

∫

D

|f |2+δ dx , (8)

holds, where C depends only on δ0, the dimension n, onstant c0
from (6) and (7), and also the onstant r0.
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Di�usion with Convetion

Linear ellipti operator with drift
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Setting of the problem

We prove estimates of solutions to the Zaremba problem for ellipti

equation in bounded Lipshitz domain D ∈ R
n
, where n > 1, of the

form

Lu := div(a(x)∇u) + b · ∇u (9)

with uniformly ellipti measurable and symmetri matrix

a(x) = {aij(x)}, i.e. aij = aji and for almost all x ∈ D and all

ξ ∈ R
n
we have

α−1|ξ|2 6
n

∑

i ,j=1

aij(x)ξiξj 6 α|ξ|2, (10)

b(x) = (b1(x), . . . , bn(x)), bj(x) ∈ Lp(D), p > n, n > 2, j = 1, . . . , n,

b(x) = (b1(x), b2(x)), bj(x) ∈ Lp(D), p > 2, n = 2, j = 1, 2.
(11)
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Setting of the problem

We assume that F ⊂ ∂D is losed and G = ∂D \ F .
Consider the Zaremba problem







Lu = l in D,
u = 0 on F ,
∂u
∂ν = 0 on G ,

(12)

where

∂u
∂ν is the outer onormal derivative of u, and l is a linear

funtional on W 1
2 (D,F ), the set of funtions from W 1

2 (D) with
zero trae on F .
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Setting of the problem

By the solution of the problem (12) we mean the funtion

u ∈ W 1
2 (D,F ) for whih the integral identity

∫

D

a∇u · ∇ϕ dx −

∫

D

(b · ∇u)ϕ dx =

∫

D

f · ∇ϕ dx (13)

holds for all test-funtions ϕ ∈ W 1
2 (D,F ), the omponents of the

vetor-funtion f = (f1, . . . , fn) belong to L2(D). Here f appears

from the representation of the funtional l .
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Auxiliaries

Suppose Bx0
r is an open ball of the radius r entered in x0. We

suppose one of the following onditions is ful�lled: for an arbitrary

point x0 ∈ F as r 6 r0 the inequality

Cq(F ∩ B
x0
r ) > c0r

n−q, q =
2n

n + 2
, n > 2,

Cq(F ∩ B
x0
r ) > c0r

n−q1 , q1 =
p

p − 1
, n = 2,

(14)

hold true.
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Auxiliaries

Note that under any of these onditions, the funtions

v ∈ W 1
2 (D,F ) satisfy the Friedrihs inequality

∫

D

v2 dx 6 K

∫

D

|∇v |2 dx .
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Main result

Theorem

If f ∈ L2+δ0(D), where δ0 > 0, then there exist positive onstants

δ(n, δ0) < δ0 and C , suh that for a solution to the problem (3) the

estimate

∫

D

|∇u|2+δdx 6 C

∫

D

|f |2+δ dx , (15)

holds, where C depends only on δ0, the dimension n, onstant c0
from (14), and also the onstant r0.
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How to apply
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How to apply

Denote by Mε the number of the Dirihlet parts Fj , F =
Mε
⋃

j=1
Fj .

Consider in D the problem







−∆u = f in D,
∂u
∂n + au = 0 on G ,
u = 0 on F

(16)

and the limit problem

{

−∆u0 = f in D,
∂u0
∂n + au0 = 0 on ∂D.

(17)
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How to apply

We estimate the rate of onvergene u → u0 as ε→ 0.

1) The family ‖u‖ is bounded, hene there exists a weak limit

u ⇀ u0.

2) Cut�o� ψε =
∏

k

ψk
ε , ψ

k
ε = ψ

(

| ln ε|
| ln rk |

)

, ψ(s) =

{

0, s 6 1,
1, s > 1 + σ.

3) Take ϕε = ϕψε as a test-funtion, subtrat one integral identity

from another. We have

∫

D

(ψε∇u −∇u0) · ∇ϕ dx +

∫

∂D

a(u − u0)ϕ ds =

=

∫

D

f · ∇ϕ(ψε − 1) dx +

∫

D

∇u · ∇ψεϕ dx +

∫

D

f · ∇ψεϕ dx .

(18)
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How to apply

Keeping in mind the equivalene of the norms in the Sobolev spae,

we derive

‖u − u0‖
2
W 1

2 (D) 6 C

(
∫

D

f · ∇ϕ(ψε − 1) dx +

∫

D

∇u · ∇ψε dx

)

.

(19)

The �rst term in the right hand side of the inequality (19) is

estimated by

K M
1
2
ε ε

1
1+σ .

Here ε
1

1+σ
is the diameter of the irle, where ψε − 1 6= 0.

4) Next, we estimate

∫

D

(∇u,∇ψε) dx .
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How to apply

I

∫

D

(∇u,∇ψε) dx 6

(

∫

D

|∇u|2 dx
)

1
2
(

∫

D

|∇ψε|
2 dx

)
1
2
6

6 K1M
1
2
ε | ln ε|

(

ε
1

1+σ
∫

ε

| ln r |−4d ln r
)

1
2
6 K2M

1
2
ε | ln ε|

− 1
2 .

Mε = | ln ε|1−θ, 0 < θ < 1.
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How to apply

II p1 = 2 + δ > 2, p2 =
2+δ
1+δ < 2.

∫

D

(∇u,∇ψε) dx 6

(

∫

D

|∇u|p1 dx
)

1
p1

(

∫

D

|∇ψε|
p2 dx

)
1
p2

6

6 K1M
1
p2
ε ε

2−p2
p2(1+σ) | ln ε|

(

ε
1

1+σ
∫

ε

| ln r |−2p2d ln r
)

1
p2

6 K2M
1
p2
ε ε

2−p2
p2(1+σ) | ln ε|

1
p2

−1
.

Mε = ε
− δ

(1+δ)(1+σ) | ln ε|
1

1+δ
−θ, 0 < θ <

1

1 + δ
.

Gregory A. Chehkin Rostov on Don

On the Boyarsky�Meyers estimates 32/ 50



p(·)-Laplaian

p(·)-Laplaian

Results from

[19℄ Yu.A. Alkhutov, G.A. Chehkin. The Boyarsky�Meyers

Inequality for the Zaremba Problem for p(·)-Laplaian // Journal of

Mathematial Sienes, New York, Springer, Vol. 274, No. 4, 2023:

423�441.
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Settings

We formulate the Zaremba problem for inhomogeneous

p(·)-Laplaian in Lipshitz domain D ⊂ R
n
with variable exponent

p, suh that

1 < α 6 p(x) 6 β <∞ for almost all x ∈ D. (20)

To set the problem we introdue the funtional spae

W (D) = {v ∈ W 1
α(D), |∇v |p(·) ∈ L1(D)} (21)

with Sobolev-Orliz norm

‖v‖W 1
p(·)

(D) = ‖v‖Lα(D) + ‖∇v‖Lp(·)(D), (22)
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Settings

where ‖ · ‖Lp(·)(D) is the Luxemburg norm de�ned by the following

formula:

‖g‖Lp(·)(D) = inf
t>0

{
∫

D

|t−1g(x)|p(x) dx 6 1

}

. (23)
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Settings

Given the norm (22) in the spae W (D), we get the re�exive

Banah spae. Denote it by W 1
p(·)(D). Also we denote by

W 1
p(·)(D,F ) the ompletion of the set of funtions from W 1

p(·)(D)

with support lying outside some neighborhood of the losed set

F ⊂ ∂D, by the norm (22).
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Settings

De�ne the spae of funtions H1
p(·)(D), whih is the losure of the

set of smooth funtions in the norm (22). Similarly, one an

introdue the spae of funtions H1
p(·)(D,F ) as a ompletion in the

norm (22) of smooth funtions equal to zero in a neighborhood of

F .

The density of smooth funtions in W 1
p(·)(D) is provided by the

well-known logarithmi ondition

|p(x)− p(y)| 6
k0

∣

∣

∣
ln |x − y |

∣

∣

∣

for x , y ∈ D, |x − y | <
1

2
, (24)

found by V.V. Zhikov.
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Settings

Setting G = ∂D \ F , onsider the Zaremba problem

∆p(·)u := div(|∇u|p(x)−2∇u) = l in D,

u = 0 on F ,
∂u

∂n
= 0 on G ,

(25)

where

∂u
∂n means the outer normal derivative of the funtion u, and

l is a linear funtional in the spae dual to W 1
p(·)(D,F ) or dual to

H1
p(·)(D,F ), whih we desribe later. For suh a problem, one an

de�ne W -solutions and H-solutions.
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Settings

The W -solution of the problem (25) is the funtion

u ∈ W 1
p(·)(D,F ) for whih the integral identity

∫

D

|∇u|p(x)−2∇u · ∇ϕ dx =

n
∑

i=1

∫

Ω

fiϕxidx , (26)

where fi ∈ Lp′(·)(Ω) for i = 1, . . . , n and p′(x) = p(x)
p(x)−1 , is valid for

all test-funtions ϕ ∈ W 1
p(·)(D,F ).

In analogous way one an de�ne H-solution, for whih (26) takes

plae with test-funtions ϕ ∈ H1
p(·)(D,F ).
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Settings

Further, it is assumed that the inequality

‖v‖Lα(D) 6 C‖∇v‖Lα(D), (27)

holds, whih implies the relation

‖v‖Lα(D) 6 C‖∇v‖Lp(·)(D).

Therefore, in the spae W 1
p(·)(D,F ) (H

1
p(·)(D,F )) we an introdue

the norm

‖v‖W 1
p(·)

(D,F ) = ‖∇v‖Lp(·)(D). (28)
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Conditions

For an arbitrary point x0 ∈ F for r 6 r0 the inequality

Cq0(F ∩ B
x0
r ) > c0r

n−q0 , where

q0 =
α′ + 1

2
, α′ = min (α,

n

n − 1
),

(29)

is valid with onstant α > 1 from (20).

Note that the ondition (29) follows from the following universal

ondition: for an arbitrary point x0 ∈ F for r 6 r0 the inequality

mesn−1(F ∩ B
x0
r ) > c0r

n−1
(30)

holds with a positive onstant c0 independent of x0 and r .
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Inequality

Theorem

Let |f |p
′

∈ L1+δ0(D), where δ0 > 0. Then, there exists a positive

onstant δ < δ0, depending only on δ0 and α, suh that the

solution to the problem (25) satis�es the estimate

∫

D

|∇u|p(x)(1+δ) dx 6 C

(
∫

D

|f |p
′(x)(1+δ) dx + 1

)

.

Here the onstant C depends only on p(·), δ0, the value c0 from

the ondition on F , the domain D and ‖f p
′(·)‖L1(D).
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If

α > n + ν, ν > 0,

than Theorem is true for F 6= ∅.
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An example of the set F
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An example of the set F

Let {lj} is dereasing sequene of positive numbers, 2lj+1 < lj
(j = 1, 2, · · · ) and ∆1 is a segment of the length l1 6 1 on the axis

Ox1. Denote by e1 the union of two losed ∆2 and ∆3 of the

length l2, ontaining both ends of ∆1

Let E1 = e1 × e1. Repeating the proedure for the segments ∆2

and ∆3 (here l3 plays the role of l2).

We get four segments of the length l3. Denote the union of them

by e2.

Then, denoting E2 = e2 × e2, we ontinue the proess.

Finally, we have the two-dimensional Cantor set F =
∞
⋂

j=1
Ej .
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An example of the set F

We onsider 3D domain, hene q = 6/5. The ondition

C6/5(F ) > 0. (31)

is equivalent to

∞
∑

j=1

2−10j l−9
j <∞. (32)

We set lj = a−j+1
, where a ∈ (2, 45/9), and hene, 2lj+1 < lj , then

∞
∑

j=1

(

1

4
a9/5

)5j

a−9 <∞.
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An example of the set F

One an show that two-dimensional measure of F equals to zero.

Indeed, on the j-th steep we have 4j losed squares with sides of

the length a−j+1
.

Gregory A. Chehkin Rostov on Don

On the Boyarsky�Meyers estimates 47/ 50



An example of the set F

For an arbitrary point x0 ∈ F and r 6 r0 we have

C6/5(F ∩ B
x0
r ) > c0r

9/5, (33)

where Bx0
r is a ball of radius r , entered in x0, the onstants

c0 =
1
2a

−9/5C6/5(F ) and r0 =
1
a
are positive.

Thus, the Boyarskiy�Meyers estimate is valid in this ase.
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Examples of the Domains

Fratals
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Thanks for your attention!
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