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Classical Bessel equation
x2u′′ + xu′ + (x2 − ν2)u = 0

Okrasiński and Plociniczak (2013):

xαDα(xβDβy) = (x2µ + ν2µ)y, 0 < α, β, µ < 1,

and sought for the solution in the form

u(x) =
∞∑
n=0

cnx
γ+µn.

The approach works because Dαxb = k · xb−α.

Rodrigues, Viera and Yakubovich (2014):

x2αD2αu(x) + xαDαu(x) + (x2α − ν2)u(x) = 0, α ∈ (0, 1]

sought for a solution in a form of series and applied Mellin integral transform.
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Authors (2021): The multi-term fractional Bessel equation

m1∑
i=1

dix
αiDαiu(x) + (xβ − ν2)u(x) = 0, αi > 0, β > 0 (1)

constructed solutions in the form of series

u(x) =
∞∑
n=0

cnx
γ+βn (2)

with coefficients cn found as

cn =
(−1)n

n∏
k=1

(
m1∑
i=1

di · Γ(1 + γ + βk)

Γ(1 + γ + βk − αi)
− ν2

) . (3)

The following characteristic equation allows to find the values of γ

m1∑
i=1

di · Γ(1 + γ)

Γ(1 + γ − αi)
− ν2 = 0. (4)
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Goal: to introduce and analyze the next generalization of multi-term Bessel equations – the quasi-
Bessel fractional equations

m∑
i=1

dix
αi+piDαiu(x) + (xβ − ν2)u(x) = 0, (5)

where α1 = max
1≤i≤m

{αi} and p1 = 0. Unlike the multi-Bessel equations, only the highest derivative Dα1

must coincide with the power of xα1 .
Quasi-Bessel equations also generalize Cauchy-Euler and constant-coefficient equations.
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1 Construction of fractional series solution

Thus, we consider equation

d1x
α1Dα1u(x) +

m∑
i=2

dix
αi+piDαiu(x) + (xβ − ν2)u(x) = 0. (6)

Definition. Equation (6) is called quasi-Bessel equation provided that α1 = max{αi}, αi, β ∈
R+ = [0,∞), i ≥ 0.

Particular cases at ν = 0 are quasi-Euler equations

d1x
α1Dα1u(x) +

m∑
i=2

dix
αi+piDαiu(x) + xβu(x) = 0.

We assume that the shifting indices pi ≥ 0 and search for the solution to equation (6)

u(x) =
∞∑
n=0

cnx
γ+sn. (7)

In the multi-term Bessel equation it was possible to use s = β as a step (the increase of powers of x).
For essentially more general equation (6) s = β fails.

In addition to p1 = 0, several other terms could also have pi = 0. Let us call them the pure Bessel
terms. For these terms the power of the factor xα matches the order of the derivative Dαu(x). Let
m1 be the number of pure Bessel terms in (6). From the definition of quasi-Bessel equations, p1 = 0,
which implies m1 ≥ 1. The terms with i = m1 + 1, ...,m have strictly positive shifted powers pi > 0.

We consider both Caputo and Riemann-Liouville derivatives. The only difference is the condition
on acceptable γ in the characteristic equation (11) needed to generate a true solution. For Riemann-
Liouville derivative γ > −1 and for Caputo case γ > dα1e − 1 we need to assure the existence of
derivatives.
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Our nearest goal is to determine the acceptable value of step s. By plugging expression (7) into
equation (6), we obtain

∞∑
n=0

cnx
γ+sn

(
m1∑
i=1

diQ(ns, αi)− ν2 +
m∑

i=m1+1

xpidiQ(ns+ pi, αi) + xβ

)
= 0.

Here

Q(r, p) =
Γ(1 + γ + r)

Γ(1 + γ + r − p)
. (8)

If we choose step s is such that
pi
s

= npi ∈ N and
β

s
= nβ ∈ N, then

∞∑
n=0

cnx
γ+sn

(
m1∑
i=1

diQ(ns, αi)− ν2

+
m∑

i=m1+1

xsnpidiQ(ns+ pi, αi) + xsnβ

)
= 0.

Step s should be such that any powers of x are included in the set γ + sn.
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• If β, pi are rational, then we represent them as irreducible fractions pi =
ai
bi

, ai, bi ∈ N. For

pi = 0, i > 1, we set ai = 0, bi = 1.

• Find the lowest common denominator: Nlcd = LCD{bi}.

• Calculate the acceptable step and corresponding shifts for β and pi:

s0 =
1

Nlcd

; n0
β =

β0

s0
∈ N; n0

pi
=
p0i
s0
∈ N, m1 < i ≤ m. (9)

• The identified parameters β0, p0i , m1 < i ≤ m in (9) can still have common factors. To maximize
step s we need to identify their greatest common factor (Ngcf ), adjust step s and each parameter.
Then, finally, we obtain:

s = s0 ·Ngcf ; nβ =
n0
β

Ngcf

; npi =
n0
pi

Ngcf

, m1 < i ≤ m. (10)
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The equation can be re-written as follows:

∞∑
n=0

cnx
γ+sn

(
m1∑
i=1

diQ(ns, αi)− ν2
)

+
m∑

i=m1+1

 ∞∑
n=npi

cnx
γ+sndiQ(ns+ pi, αi)

+
∞∑

n=nβ

cnx
γ+sn = 0.

The coefficients for different powers of x must be zeroed. The coefficient for xγ, i.e. for n = 0, must
be equal to zero. Then we arrive at the characteristic equation

G(γ) =

m1∑
i=1

diΓ(1 + γ)

Γ(1 + γ − αi)
− ν2 = 0 (11)

where pi = 0 for 1 ≤ i ≤ m1. As we see, for quasi-Bessel equations the characteristic equation and its
roots γ are determined by the non-deviating terms with pi = 0. This is an unusual and unexpected
behavior.
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Example. For equation

2x2.4D2.4u(x)− 3x1.8D1.5u(x) + xD0.4u(x) + (x3 − ν2)u(x) = 0

we have d1 = 2, d2 = −3, d3 = 1, α1 = 2.4, α2 = 1.5, α3 = 0.4. Then β = 3, p2 = 0.3, p3 = 0.6 = 3
5
,

and we obtain b1 = 1, b2 = 10, b3 = 5, their Nlcd = 10. Thus,

s0 =
1

Nlcd

= 0.1, n0
β =

β

s0
= 30, n0

p2
=
p2
s0

= 3, n0
p3

=
p3
s0

= 6.

Since Ngsf = GCF(30, 3, 6) = 3, then finally,

s = s0 ·Ngsf = 0.3, nβ =
30

3
= 10, np2 = 1, np3 = 2.
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Back to the characteristic equation (11). In order to satisfy it, coefficient cn needs to be split into
cpin for m1 < i ≤ m, and cβn. They should compensate like terms, the terms which are npi steps before
the term with the coefficient cn together with the term which is nβ steps before the term with the
same coefficient cn. These coefficients can be expressed as

cn=−

U(n− nβ)cn−nβ +
m∑

i=m1+1

U(n− npi)cn−npi · diQ((n− npi)s, αi)

m1∑
i=1

diQ(ns, αi)− ν2
(12)

Q(r, p) =
Γ(1 + γ + r)

Γ(1 + γ + r − p)
, npi =

pi
s
, nβ =

β

s
.
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Constant coefficients

m∑
i=1

diD
αiu(x) + u(x) = 0, α1 > αi > 0, i = 2, ...,m. (13)

We multiply each term by xα1 . Then we obtain

d1x
α1Dα1u(x) +

m∑
i=2

dix
α1Dαiu(x) + (xα1 − 0)u(x) = 0, (14)

which is the quasi-Bessel equation with ν = 0, β = α1. Characteristic equation (11) becomes

Γ(1 + γ)

Γ(1 + γ − α1)
= 0, (15)

and we arrive at roots γ = α1 − k, k ≥ 1. Since only one term has matching power of x, then in this
case the roots are independent of coefficients di. The solutions to these equations were previously
identified by Kilbas, Srivastava, Trujillo (2006).

11



Quasi-Euler equations
We assume that β1, the power of x at the highest derivative α1, satisfies inequality β1 ≤ α1. We
consider quasi-Euler equation

m∑
i=1

dix
βiDαiu(x) + xδu(x) = 0, (16)

α1 > αi > 0, i = 2, ...,m, α1 ≥ β1, α1 − β1 ≥ αi − βi.

We multiply each term by xα1−β1 and obtain

d1x
α1Dα1u(x) +

m∑
i=2

dix
α1−β1+βiDαiu(x) + (xα1−β1+δ)u(x) = 0. (17)

In this case ν = 0, β = α1 − β1 + δ.
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Theorem 1. Caputo derivatives
Let α1 be fractional and m1, 1 ≤ m1 < m, be the number of pure Bessel terms with pi = 0.
Let ν satisfy the threshold inequality

ν2 ≥ νmin = Γ(dα1e)
m1∑
i=1

di
Γ(dα1e − αi)

. (18)

Then there exists a unique series solution (7), (12) for fractional equation (6) with Caputo derivatives
in any domain x ∈ [0, b], b ∈ R+.
If ν = 0 and β ≥ dα1e then at least one solution in the form of series can always be found.

Remark 1. If there exists n such that γ+ sn is another root of (11) with step s defined in (10), then
γ does not generate solution (7) for equation (6) because in this case the series is divergent.

It can happen when ν = 0 and only p1 = 0 among all pi. Then the difference between the γ roots
is exactly one. If step s is a fraction of one, the smaller γ root at some step falls onto a bigger γ root,
and the series blows up.

13



Example 2. Equation

x1.5D1.5u(x) + x0.7D0.5u(x) + x1.2u(x) = 0

generates characteristic equation
Γ(1 + γ)

Γ(1 + γ − 1.5)
= 0.

In this case β =
6

5
, p2 = 1

5
, ν = 0. Then Nlcd = 5, s =

1

5
, nβ = 6, np2 = 1. The characteristic equation

has roots γ1 = −0.5, γ2 = 0.5. Therefore γ2 = γ1 + 5s, which means that for n = 5

Q(5s, α1) =
Γ(1 + γ1 + 5s)

Γ(1 + γ1 + 5s− α1)
=

Γ(1− 0.5 + 1)

Γ(1− 0.5 + 1− 1.5)
=

Γ(1.5)

Γ(0)
= 0.

Since Q(5s, α1) is the denominator of c5 in (12) and makes blow-up c5 =∞, then γ1 does not generate
a solution in the form of proposed series.

Thus, if characteristic equation (11) has several roots γ, then all the roots, except for the largest
root, need to be checked for validity.
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Theorem 2. Series solution (7) with coefficients (12) of fractional quasi-Bessel equation (6) with
p1 = 0, di > 0, 1 ≤ i ≤ m1, converges and represents the solution to (6) provided that the threshold
condition (18) for ν is satisfied in the equations with Caputo derivatives. No such threshold condition
is required for the equations with Riemann-Liouville derivatives.

If p1 > 0 but for some i > 1 there exists at least one pi = 0, then the series diverges and a
series solution in form (7) does not exist for equations with both Caputo and Riemann-Liouville
derivatives.

Remark 2. For equations with Caputo derivative, based on conditions in Theorem 1

• If p1 = 0, ν > 0 and α1 is fractional then the found series solution is unique up to a constant,

• It p1 = 0 and α1 is integer, equation (6) may have multiple solutions.

Remark 3. The root γ in the solution, which is calculated in (11), depends solely on the terms in
equation (6) with pi = 0.
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Theorem 3 (Uniqueness) We assume that the initial value problem for fractional equation (6) in

domain x ∈ [0, b] with Caputo derivatives and initial conditions u(j)(0) = u
(j)
0 , j = 0, 1, ..., dα1 − 1e,

has a continuous solution.
Let

ν2 > bβ +
m∑
i=1

qi|di|bni+pi , (19)

where

qi =


1

Γ(ni − αi)(ni − αi + 1)
, αi < ni

1 , αi = ni

. (20)

The proof is close to that by Rodrigues, Viera, and Yakubovich (2013).
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Example 3. (quasi-Bessel equation with Caputo derivatives).
Let us consider equation

1.5x1.5D1.5
C u(x)− 1.2x1.9D1.1

C u(x) + 3xD0.5
C u(x) + (x2 − ν2)u(x) = 0. (21)

Here β = 2, d1 = 1.5, d2 = −1.2, d3 = 3, α1 = 1.5, α2 = 1.1, α3 = 0.5,
p2 = 0.8, p3 = 0.5.

Characteristic equation becomes:

G(γ) =
1.5Γ(1 + γ)

Γ(1 + γ − 1.5)
− ν2 = 0. (22)

The graph of the expression on the left side of equation (22) is in Figure 1. It is the same for any
ν except for the ν2 shift down difference. To satisfy equation (22) for ν = 2 we find γ = 2.1995; for
ν = 3.5 we have γ = 4.3181.
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Figure 1: Function G(γ)− ν2 for equation (21) with ν = 2.

17



Other parameters involved in the process as described before are:

• Since all pi, β ∈ Q+, we get p02 = p2 = 0.8 =
4

5
;

p03 = p3 = 0.5 =
1

2
; s0 = β = 2 =

2

1
.

• The lowest common denominator Nlcd = LCM{5, 2, 1} = 10.

• s =
1

Nlcd

=
1

10
= 0.1, np2 =

p2
s

=
0.8

0.1
= 8, np3 =

p3
s

=
0.5

0.1
= 5,

nβ =
β

s
=

2

0.1
= 20, Ngcf = 1.

The solutions are represented in Figure 2. The red line is the recalculation of equation (21) by
plugging in the calculated solution u(x) into the equation, this line shows that the error is very close
to zero.
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Figure 2: Solution for equation in Example 3. Red line close to zero is the check for the accuracy of
the solution. Step h = 0.001.

It is important to point out that the closer ν is to the minimum threshold, the less accurate the
result is due to the loss of accuracy in the calculation of fractional derivative.
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Example 4. (constant coefficients, integer derivatives).

Equation u′ + u = 0 is converted into xu′ + xu = 0. The series solution has form u(x) =
∞∑
n=0

cnx
sn,

characteristic equation
Γ(1 + γ)

Γ(1 + γ − 1)
= 0

has root γ = 0. Based on (10), step s = 1. Therefore, we get

cn = cβn = − cn−1
Q(n, 1)

= −cn−1
Γ(1 + n− 1)

Γ(1 + n)
= −cn−1

n
= c0

(−1)n

n!
,

and the solution as expected is

u(x) =
∞∑
n=0

cnx
sn = c0

∞∑
n=0

(−1)n

n!
xn = c0e

−x.
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Example 5. Equation

d1D
2.1
R u(x) + d2D

1.4
R u(x) + d3D

0.7
R u(x) + u(x) = 0,

should be rewritten in the quasi-Bessel form as

d1x
2.1D2.1

R u(x) + d2x
1.4+0.7D1.4

R u(x) + d3x
0.7+1.4D0.7

R u(x) + (x2.1 − 0)u(x) = 0.

Then α1 = 2.1, p2 = 0.7, p3 = 1.4, β = 2.1 have the greatest common factor s = 0.7, which
serves as the step in the fractional series. The corresponding characteristic equation has three roots:
γ1 = −0.9, γ2 = 0.1 and γ3 = 1.1. Since γ2 6= γ1 + sn, γ3 6= γ1 + sn, γ3 6= γ2 + sn for any n ∈ N, then,
based on these roots, we can construct three different solutions

u1(x) =
∞∑
n=0

cnx
−0.9+sn; u2(x) =

∞∑
n=0

cnx
0.1+sn; u3(x) =

∞∑
n=0

cnx
1.1+sn. (23)
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In the case of a similar, almost the same constant-coefficient equation (1.5 instead of 1.4)

d1D
2.1
R u(x) + d2D

1.5
R u(x) + d3D

0.7
R u(x) + u(x) = 0, (24)

which turns into

d1x
2.1D2.1

R u(x) + d2x
1.5+0.6D1.5

R u(x) + d3x
0.7+1.4D0.7

R u(x) + x2.1u(x) = 0 (25)

with α1 = 2.1, p2 = 0.6, p3 = 1.4, β = 2.1, we obtain the same three characteristic roots
γ1 = −0.9, γ2 = 0.1 and γ3 = 1.1. However, unlike the previous equation with s = 0.7, the greatest
common factor of α1 = 2.1, p2 = 0.6, p3 = 1.4, β = 2.1 is now equal to 0.1 and, thus, s = 0.1.
In this case γ1 tread upon γ2 in the 10th step, γ2 “set foot on” γ3 in its 10th step: γ2 = γ1 + 10s,
γ3 = γ2 + 10s, and we have two blow-ups thanks to c10 =∞ in both cases. Consequently, neither γ1
nor γ2 represent a root which can be used to generate a series solution in the proposed form.

The highest root γ3 = α1 − 1 (γ3 = 1.1 in our example) does not generate a blow-up of the series.
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Conclusions

Quasi-Bessel and quasi-Euler equations have the same orders of the highest derivative and the
corresponding power function. The other terms xα+pDαu(x), p ≥ 0, cover a broad class of fractional
differential equations. The powers of x may avoid matching the order of the corresponding fractional
derivatives (except for the highest derivative), whereas such a match is usually required for the
successful applications of integral transforms.

If the deviating (shifting) parameters p are non-negative and meet certain non-restrictive condi-
tions, then we construct the existence theory for quasi-Bessel equations in the class of fractional series
solutions. The presented theory is based on the unusual characteristic equation, whose roots γ, the
power parameters in the series presentation of the solutions, are independent of the addends xξDαu
with non-matching values α 6= ξ.

If the power factors x have an order less than the order of the corresponding derivatives, then
developing the theory for such quasi-Bessel equations still remains an open problem.

Dubovski and Slepoi, Construction and analysis of series solutions for fractional quasi-Bessel equations,
Fract. Calc. Appl. Anal. 25, pages 1229–1249 (2022)
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