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1. CONVOLUTIONS ON LIE GROUPS

There is given a Lie group G: a manifold with a binary operation
x ◦ y : G × G → G, the neutral element e, x ◦ e = e ◦ x = x , x ∈ G,
and each x ∈ G has the inverse x−1x = xx−1 = e. We concentrate
here on groups which are diffeomorphic with the Euclidean space
ω : G → Rm.
Then we have:

The Haar measure dGµ defined uniquely;
The Fourier transformation (see the next slide for definitions)

FG : S(G) → S(Rm), FG : S′(G) → S′(Rm)

with its inverse Forier transformation F−1
G : S(Rm) → S(G),

F−1
G : S′(Rm) → S′(G) and the corresponding Plancherel

theorem ∥FGφ∥2 = (2π)n/2∥φ∥2.
The generic differential operators D1, . . . ,Dm, generated by
vector fields from the corresponding Lie algebra.
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1. CONVOLUTIONS ON LIE GROUPS

Convolution operators, defined as follows

W 0
a,G := F−1

G aFG : S(G) → S′(G), (0.1)

where the symbol a(ξ) is a distribution on the dual group
a ∈ S′(Rm).

The Schwartz space S(G) and its dual space of distributions S′(G)
represent the pull-back spaces of fast decaying infinitely smooth
functions S(Rm) and its dual space of distributions S′(Rm):

ω∗ : S(Rm) → S(G), where ω∗φ(x) := φ(ω(x)), φ ∈ S(Rm),

ω∗ : S′(Rm) → S′(G), ω : G → Rm, x ∈ G.

Note, that as in the classical case the Fourier transformation and
its inverse are bounded operators in the Schwartz spaces

F±1
G : S(G) → S(G),

: S′(G) → S′(G).
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1. CONVOLUTIONS ON LIE GROUPS

What is important: all generic differential operators are
convolutions Dk = W 0

dk ,G with polynomial symbols dk (ξ) = −iξk ,
k = 1, . . . ,m.
Thus, we can solve easily the following integro-differential
convolution equations and find their precise essential spectra∑

|α|+|β|,|γ|⩽n

[
cα,βDγφ(x) +Dα

∫
G

kα,β(x ◦ y−1)Dβφ(y)dGµ(y)
]
= f (y). (1.1)

The symbol has polynomial growth

a(ξ) :=
∑

|α|+|β|,|γ|⩽n

[
cα,β(−iξ)γ + (−iξ)α+βFGkα,β(ξ)

]
, ξ ∈ Rm. (1.2)
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1. CONVOLUTIONS ON LIE GROUPS

By Mp(Rm) we denote the algebra of functions (Lp-multipliers)
such that the corresponding convolution operator is bounded in
the space Lp(G,dGµ):

W 0
a,G : Lp(G,dGµ) → Lp(G,dGµ), 1 < p <∞.

Some informationn about the multipliers classes Mp(Rm):
Due to the Plancherel theorem, M2(Rm) = L∞(Rm), i.e., for
a ∈ L∞(Rm) the operator W 0

a,G is bounded in L2(G,dGµ).
Functions of the Wiener class a(ξ) = c0 + FGk(ξ), where
k ∈ L1(G,dGµ), belong to Mp(Rm) for all 1 ⩽ p ⩽ ∞.
in 1-dimensional case all functions of bounded variation
belong to Mp(R) for all 1 < p <∞.
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1. CONVOLUTIONS ON LIE GROUPS

All piecewise-constant functions PC(Rm) on politops
(intersections of finite number of hypersurfaces) belong to
Mp(Rn) for all 1 < p <∞.

PCp(Rm) denotes the closure of PC(Rm) in the algebra Mp(Rm).

Fig. 1
Arises a natural question: which spaces are most relevant to
consider solvability of the convolution integro-differential
equation (1.2)?
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2. GENERIC BESSEL POTENTIAL SPACES

For this purpose we define the generic Bessel potential spaces
GHs

p(G,dGµ) on the Lie group G, endowed with the norm

∥ψ |GHs
p(G,dGµ)∥ := ∥W 0

⟨ξ⟩sψ |Lp(G,dGµ)∥

= ∥F−1
G ⟨ξ⟩sFGψ |Lp(G,dGµ)∥ ⟨ξ⟩s := (1 + |ξ|2)s, s ∈ R. (2.1)

For an integer s = n = 1,2, . . . the space GHn
p(G,dGµ) is

isomorphic to the generic Sobolev space GWn
p(G,dGµ), defined

with the help of generic differential operators, endowed with the
norm

∥φ |GWn
p(G,dGµ)∥ :=

∑
|α|⩽n

∥Dαφ |Lp(G,dGµ)∥p

1/p

.

Theorem
Let 1 < p <∞, s ∈ R. The multiplier class for the space GHs

p(G,dGµ)
is independent of s and coincides with the multiplier class Mp(Rm)
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2. GENERIC BESSEL POTENTIAL SPACES

Let Mr
p(Rm), 1 < p <∞, −∞ < r <∞ denote those functions

(r -multipliers) for which the convolution operator of order r is
bounded in the setting

W 0
a,G : GWs

p(G,dGµ) → GWs−r
p (G,dGµ).

The r-multipliers class Mr
p(Rm) is, naturally, independent of the

smoothness parameter s. Moreover, there holds the following:

Mr
p(Rm) := {⟨ξ⟩r a(ξ) : a ∈ Mp(Rm)}, ⟨ξ⟩r = (1 + |xi |2)1/2,

PCr
p(Rm) := {⟨ξ⟩r a(ξ) : a ∈ PCp(Rm)}, r ∈ R.
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2. GENERIC BESSEL POTENTIAL SPACES

Theorem
Let 1 < p <∞, s ∈ R. A convolution integro-differential equation∑

|α|+|β|,|γ|⩽n

[
cα,βDγφ(x) +Dα

∫
G

kα,β(x ◦ y−1)Dβφ(y)dGµ(y)
]
= f (y). (2.2)

with the symbol a ∈ Mn
p(Rm), (see (1.2)) is Fredholm in the setting

φ ∈ GHs
p(G,dGµ), f ∈ GHs−n

p (G,dGµ) (2.3)

if only the symbol is elliptic

inf
ξ∈Rm

|⟨ξ⟩−na(ξ)| > 0. (2.4)
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2. GENERIC BESSEL POTENTIAL SPACES

Theorem continued
Moreover, if p = 2 or p ̸= 2 but a ∈ PCr

p(Rm), the ellipticity
condition (2.4) is sufficient for equation (3.2) to have a unique
solution φ = W 0

G,a−1 f ∈ GHs
p(G,dGµ) for arbitrary

f ∈ GHs−n
p (G,dGµ) (i.e., the operator W 0

G,a is invertible).
The operator has only the essential spectrum and

Sp W 0
a,G := {z ∈ C : z = a(ξ) : −∞ < ξ,∞} .

Remark
Note, that due to the ”Igari Paradox” the ellipticity condition (2.4)
can not be sufficient for the Fredholm property of equation (1.1):
For p ̸= 2 there exist even continuous elliptic multipliers
a ∈ Mp(Rm) ∩ C(Rm) such that W 0

a,G is not bounded in
GHs

p(G,dGµ).
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3. FUNDAMENTAL SOLUTION

Theorem
Let 1 < p <∞. For an integro-differential convolution operator
W 0

G,a with the symbol a ∈ PCm
p (G) there exists a kernel Ka (a

distribution in general) such that the operator is written as a
group convolution with this kernel

W 0
G,aφ(x) := Ka ⋆G φ(x) =

∫
G

Ka(x ◦ y−1)φ(y)dGµ, φ ∈ S(G).

(3.1)

Note, that the G-convolution Ka ⋆G φ of a distribution Ka ∈ S′(G)
with a test function φ ∈ S(G) is a correctly defined operation.

L. Hörmander proved the above theorem for the case
{G, ◦} = {Rn,+} (cf. [Hr60]). In our case the Theorem remains
valid due to homeomorphism of G and Rn.
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3. FUNDAMENTAL SOLUTION

Theorem
Distributional Hörmander’s kernel KA−1 of the inverse to a generic
differential operator with constant coefficients

A(D)φ(x) =
∑
|α|⩽n

cαDαφ(x) (3.2)

and elliptic symbol infξ∈Rn det |A (ξ)| > 0, represents the
Fundamental solution F A(x) = KA−1 for the operator A(fD), i.e.
AF A−1 = δ and coincides with the Hórmander’s kernel of the
inverse operator.

The fundamental solution represents the inverse Fourier
transform of the inverse symbol F A = F−1

G A (−1).
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3. FUNDAMENTAL SOLUTION

Indeed, the symbol of the operator A(D) has polynomial growth

A (ξ) :=
∑
|α|⩽n

cα(−iξ)α, ξ ∈ Rm (3.3)

and if the symbol is elliptic, the inverse operator is a convolution
with the symbol A −1(ξ), i.e.,

A−1(D)ψ(x) = W 0
A −1ψ(x) = (F A ∗G ψ)(x) =

∫
G

F A(x ◦ y−1)ψ(y)dGy ,

where F A(x) is the distributional Hörmander’s kernel.
F A(x) is the Fundamental solution for A because

ψ = AA−1ψ = AF A ∗G ψ and, consequently, AF A = δ.
The formula F A = F−1

G A (−1) follows from the formula
A (−1) = FKA−1 .
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3. FUNDAMENTAL SOLUTION

With the fundamental solution F A for the generic differential
operator A at hand we can define the Newtons, Single layer and
double layer potential operators for a domain Ω ⊂ G

NΩψ(x) =
∫
Ω

F A(x − y)ψ(y)dGµ(y),

VΩφ(x) =
∫
∂Ω

F A(x − τ)φ(τ)d∂Ωµ(τ), (3.4)

WΩφ(x) =
∫
∂Ω
∂ν(x)F A(x − y)φ(τ)d∂Ωµ(τ),

where d∂Ωµ is the induced measure on the boundary ∂Ω of Ω.
There holds the following Gauss formula for the domain∫

Ω
Djψ(y)dGµ(y) =

∫
∂Ω
νj(τ)ψ(τ)d∂Ωµ(τ), j = 1, . . . ,n, (3.5)

where νj(t) is the component of the outer normal vector field
ν(t) = (ν1(t), . . . , νn(t))⊤ on the boundary ∂Ω.
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3. FUNDAMENTAL SOLUTION

From the Gauss formula (3.5) there follow I and II Green’s
formulae for the generic Laplace operator ∆G := D2

1 + · · ·+ D2
n :∫

Ω
(∆Gφ)(y)ψ(y)dGµ(y) =

∫
∂Ω

(Dνφ)(τ)ψ(τ)d∂Ωµ(τ)

−
∫
Ω
(Dj(τ)φ)(τ)(Dj(τ)ψ)(τ)d∂Ωµ(τ),∫

Ω
(∆Gφ)(y)ψ(y)dGµ(y)−

∫
Ω
φ(y)(∆Gψ)(y)dGµ(y)

=

∫
∂Ω

(Dνφ)(τ)ψ(τ)d∂Ωµ(τ)−
∫
∂Ω
φ(τ)(Dνψ)(τ)d∂Ωµ(τ),

(Dνφ)(t) := ν1(t)(D1φ)(t) + · · ·+ νn(t)(Dnφ)(t)

Green’s I and II formulas can be derived for any other high order
differential operator (see [Du01] where the classical cases are
considered).
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3. FUNDAMENTAL SOLUTION

For a mixed type boundary value problem (BVP) for arbitrary
elliptic second order equation{

(Au)(x) :=
∑

|α|⩽2(D
αu)(x) = f (t , x), x ∈ Ω, t ∈ R+ = (0,∞),

u(t , ω) = g(t , ω), (∂νu)+(t , ω) = h(t , ω), ω ∈ ∂Ω,

(3.6)

we have the following representatio formula for a solution

u(x) = NΩf (x) + (WΩu+)(x)− (VΩ(∂νu)+)(x), x ∈ Ω,

which can be used to derive boundary pseudodifferential
equation for the BVP (3.6).
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4. EXAMPLES OF FUNDAMENTAL SOLUTIONS

EXAMPLE 1 (cf. [Du25]). The direct product of positive half axes
Rn
+ = (0,∞)n is a Lie group with the group operation

x ◦ y = (x1y1, . . . , xnyn), with the dual R̂n
+ = Rn and the Haar

measure
dx1

x1
· · · dxn

xn
. The group Fourier transformation on Rn

+

coincides with the Mellin transformation (see below Example 4)
and the generic differential operators in Rn

+ are

Dk = xk∂k , k = 1,2, . . . ,n.

The fundamental solution for the Generic Laplacian
∆Rn

+
= D2

1 + · · ·+ D2
n is

K∆Rn
+
(x) :=


1

4π
ln(ln2 x1 + ln2 x2), if n = 2,
Γ(n/2)

2(2 − n)πn/2 (ln
2 x1 + · · ·+ ln2 xn)

2−n
2 if n > 2.

(4.1)
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4. EXAMPLES OF FUNDAMENTAL SOLUTIONS

EXAMPLE 2 (cf. [Du25]). The direct product of intervals
In = (−1,1)n is a Lie group with the group operation

x ◦ y =

(
x1 + y1

1 + x1y1
, . . . ,

x1 + y1

1 + x1y1

)
, x , y ∈ In

with the Haar measure
dx1

1 − x2
1
· · · dxn

1 − x2
n

and the generic

differential operators:

Dk = (1 − x2
k )∂k , k = 1,2, . . . ,n.

Then the fundamental solution for the Generic Laplacian
∆Rn

+
= D2

1 + · · ·+ D2
n is

K∆Rn
+
(x) :=


1

4π
ln

1
4

[
ln2 1 + x1

1 − x1
+ ln2 1 + x2

1 − x2

]
, if n = 2,

2n/2−2Γ(n/2)
(2 − n)πn/2

[
ln2 1 + x1

1 − x1
+ · · ·+ ln2 1 + xn

1 − xn

] 2−n
2

if n > 2.

(4.2)
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5. EXAMPLES OF LIE GROUPS

EXAMPLE 3: Euclidean space Rm

The most trivial example of the Lie group is the Euclidean space
Rm with the sum as the binary operation

x ◦ y = x + y , e = 0, x−1 = −x , x , y ∈ Rm.

The Haar measure is the Lebesgue measure, the Fourier
transform is the classical Fourier transform F , generic
differential operators are coordinate derivatives

∂k :=
∂

∂xk
, k = 1, . . . ,m

and convolutions are classical

W 0
aφ(x) = c0φ(x) +

∫
Rn

k(x − y)φ(y)dy , a(ξ) = c0 + (Fk)(ξ).

The generic Bessel Potential Space is the classical BPS.
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5. EXAMPLES OF LIE GROUPS

EXAMPLE 4: Half line R+: is a Lie group with the group operation

as the usual multiplication x ◦ y = xy , with the Haar measure
dx
x

.
The group Fourier transformation on R+ is the Mellin
transformation

Mβψ(ξ) :=

∫
R+

t iξ−βψ(t)
d t
t
, ξ ∈ R,

The corresponding convolution equation is (g(ξ) = c0 + Mβk(ξ))

M0
gφ(t) = c0φ(t) +

∫
R+

k
(

t
τ

)
φ(τ)

dτ
τ

= f (t), t ∈ R+.

The generic differential operator is

D = t
d
dt

= W 0
−iξ.

Mellin convolution equations have many applications in
Mathematical Physics, Mechanics etc.
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5. EXAMPLES OF LIE GROUPS

EXAMPLE 5: The interval G := (−1,1): If we endow the interval
G := (−1,1) with the binary operation

x ◦ y :=
x + y
1 + xy

, x , y ∈ G,

which is an automorphism of G = (−1,1), it makes G a Lie group
with the neutral element e = 0 and −x the inverse to x ∈ G. The

invariant Haar measure on G is dGx :=
dx

1 − x2 and the invariance
means

dG(x ◦ y) = dGx , ∀ x , y ∈ G.

The fourier transformation on G is:

(FGv)(ξ) :=
∫ 1

−1

(
1 − y
1 + y

)iξ

v(y)dGy , ξ ∈ R. (5.1)

Thus, the dual group is isomorpic to the set of real numbers
Ĝ = R.
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5. EXAMPLES OF LIE GROUPS

The inverse Fourier transformation writes

(F−1
G ψ)(x) =

1
π

∫ ∞

−∞

(
1 − x
1 + x

)−iξ

ψ

(
ξ

2

)
dξ, x ∈ G. (5.2)

Convolution equation on the Lie group G = (−1,1) has the form

Au(x) := c0u(x) +
∫ 1

−1
k
(

x − y
1 − xy

)
v(y)dy
1 − y2 = h(x), (5.3)

x ∈ G := (−1,1)

and the symbol (FGAu)(ξ) = [c0 + (FGk)(ξ)] (FGu)(ξ) = (FGh)(ξ)
governs its solvability.
The generic differential operator is

D = (1 − x2)
d
dx
.
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6. PRANDTL EQUATION

The above results were applied to the celebrated Prandtl equation

Pu(x) =
cu(x)
1 − x2 +

d
πi

∫ 1

−1

u′(y)dy
y − x

= f (x), x ∈ G. (6.1)

This equation has an ample applications in Mechanics and
Mathematical Physics (called also Airfoil equation) and was
investigated by many authors, but solved only numerically.
The symbol of the equation is

P(ξ) := c + 2diξ coth(πξ), ξ ∈ R. (6.2)

Since the equation is considered in the setting

u ∈ GHs
p(G,dGµ), f ∈ GHs−1

p (G,dGµ),

the symbol responsible for the solvability is

P1(ξ) :=
c + 2diξ coth(πξ)√

1 + ξ2
, ξ ∈ R.
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6. PRANDTL EQUATION

The symbol is

2d
π i

2d
π i

Fig. 2. The essential epectrum of
the operator P: Plot of the sym-

bol P1(ξ) =
c + 2diξ coth(πξ)√

1 + ξ2
.
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7. TRICOMI EQUATION

Another equation which turned out to be of type (5.3) is the
famous Singular Tricomi equation

T v(x) = cv(x) +
d
πi

∫ 1

−1

v(y)dy
y − x

+
e
πi

∫ 1

−1

v(y)dy
1 − xy

= g(x), (7.1)

x ∈ G := (0,1),

which arises in boundary value problems for the partial
differential equations which change type (elliptic to hyperbolic).
The symbol of the equation is

T (ξ) := c − id tanh(πξ) +
e

cosh(πξ)
, ξ ∈ R. (7.2)
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7. TRICOMI EQUATION

Fig. 3. The essential epectrum of
the operator P: Plot of the sym-
bol
c − id tanh(πξ) +

e
cosh(πξ)

.
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8. LAVRENTJEV-BITSADZE EQUATION

The third equation from the class is the Lavrent’ev-Bitsadze
equation

LBφ(t) = cφ(t) +
d
π

∫ 1

0

[
1

τ − t
+

1 − 2τ
t + τ − 2tτ

]
φ(τ)dτ = h(t), (8.1)

x ∈ G := (0,1).

This equation also emerges in the investigation of boundary value
problems for the partial differential equations which change type.
The symbol of the equation is

L B(ξ) := c − id tanh
πξ

2
, ξ ∈ R. (8.2)
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8. LAVRENTJEV-BITSADZE EQUATION

Fig. 4. The essential epectrum of
the operator P: Plot of the sym-
bol c − id tanh πξ

2 .
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9. REMARKS TO THE LIE GROUP G = (−1,1)

My interest to equations was attracted by the paper of V. Petrov
and V. Petrov & T. Suslina who applied the diffeomorphism

t(x) =
1
2
ln

1 − x
1 + x

, x(t) = − tanh t , x ∈ G = (−1,1), t ∈ R

and transformed the Prandtl, Tricomi and Lavrentjev-Bitsadze
equation on G = (−1,1) into a classical Fourier convolution
equation on the real axes R. Equations were solved in spaceless
setting and, later, also in the Sobolev space W1-setting. Nugzar
Shavlakadze (Tbilisi) investigated the Prandtl equation with a
similar approach independently.
I have noted, that equation (5.3) belongs to a class of convolution
equations on the Lie group G = (−1,1). Thia approach has many
advantages and allowed to investigate convolution equations for
other Lie groups and get deeper results: multiplier theory,
general space setting Hs

p, GHs
p etc.
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10.BVP FOR THE LAPLACE-BELTRAMI EQUATION
ON HYPERSURFACE WITH LIPSCHITZ BOUNDARY

Let C be a smooth hypersurface in R3 with the Lipschitz
boundary Γ = ∂C . We assume a bit more: the boundary Γ is
piecewise-smooth, i.e., the tangent vector to Γ has jumps only at
the finite number of knots

Fig. 5

MΓ := {c1, . . . , cn} ⊂ Γ (see Fig. 5). The inner angle αj between the
tangent lines at the knot cj satisfies the inequality 0 < αj < 2π.
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10.BVP FOR THE LAPLACE-BELTRAMI EQUATION
ON HYPERSURFACE WITH LIPSCHITZ BOUNDARY

Let ν := (ν1, ν2, ν3)
⊤ be the normal vector field on the surface C

and νΓ := (νΓ,1, νΓ,2, νΓ,3)
⊤ be the normal vector field on the

boundary Γ, tangential to the surface C .
The boundary Γ is decomposed in two parts ∂C = Γ = ΓD ∪ ΓN and
we study the following mixed boundary value problem

∆C u(t) = f (t), t ∈ C ,

u+(s) = g(s), on ΓD,

(∂νΓ
u)+(s) = h(s), on ΓN .

(10.1)

Here ∆C is the Laplace-Beltrami operator

∆C := D2
1 + D2

2 + D2
3 , Dj := ∂j − νj∂ν , j = 1,2,3

D1,D2,D3 are Günter’s tangential derivatives on the surface and
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10.BVP FOR THE LAPLACE-BELTRAMI EQUATION
ON HYPERSURFACE WITH LIPSCHITZ BOUNDARY

∂νΓ
:= νΓ,1D1 + νΓ,2D2 + νΓ,3D3

is the normal derivative on the boundary Γ, tangential to the
surface C .

The pure Dirichlet and pure Neumann problems are particular
cases of the BVP (10.1) when, respectively, ΓN = ∅ and ΓD = ∅. The
next theorem was proved in R. Duduchava, M. Tsaava T.
Tsutsunava in [DTT14].

Theorem
The Mixed BVP (10.1) and the pure Dirichlet BVP (when ΓN = ∅)
have unique solutions in the classical weak setting:

u ∈ H1(C ), f ∈ H̃−1(C ),

g ∈ H1/2(ΓD), h ∈ H−1/2(ΓN).
(10.2)
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Theorem continued
The pure Neumann BVP (10.1), when ΓD = ∅, has a unique
solution in the classical weak setting (10.2) only for those data
which satisfy the following necessary and sufficient compatibility
condition (f ,1)C − (h,1)Γ = 0.

If f and h are regular integrable functions, the solvability
condition acquires the form:∫

C
f (y)dσ −

∮
Γ

h(s)ds = 0.

To get more information about solutions to the BVP (10.1) we
consider it in the following non-classical setting:

u ∈ GHs
p(C , ρ), f ∈ GHs−2

p (C , ρ), g ∈ GHs−1/p
p (Γ, ρ), (10.3)

h ∈ GHs−1−1/p
p (Γ, ρ), 1 < p <∞, s >

1
p
, ρ(t) =

n∏
j=1

|t − cj |γj .
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The weighted spaces GHs
p(C , ρ) and GHs

p(Γ, ρ) are defined, as
usual, locally.

To the set of knots MΓ we add all those smoothness points on
Γ where the Dirichlet and Neumann boundary conditions collide
and the angle there is αj = π.

Let MΓ = MDD
⋃
MNN

⋃
MDN , where:

MDD consists of those knots cj where the Dirichlet boundary
conditions collide;
MNN consists of those knots cj where the Neumann boundary
conditions collide;
MDN consists of those knots cj where the DIrichlet and
Neumann boundary conditions collide.
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To each knot cj we assocoate a model domain-angle of the same
magnitude αj (see Fig. 6).

Fig. 6. Angular domain Ωα.
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In the model domain consider the following model BVPs:
DD. At a knot cj ∈ MDD the Dirichlet BVP for the Laplace

equationin in the setting:{
∆u(x) = f (x), x ∈ Ωαj ,

u+(t) = g(t), on Γαj = R+ ∪ Rαj ,
(10.4)

u ∈ GHs
p(Ωαj , t

βj ), f ∈ GHs−2
p (Ωαj , t

βj ), g ∈ GWs−1/p
p (Γαj , t

βj ).

NN. At a knot cj ∈ MNN the Neumann BVP for the Laplace
equationin in the setting:{

∆u(x) = f (x), x ∈ Ωαj ,

(∂x2u)+(t) = h(t), on Γαj .
(10.5)

u ∈ GHs
p(Ωαj , t

βj ), f ∈ GHs−2
p (Ωαj , t

βj ), h ∈ GWs−1−1/p
p (Γαj , t

βj ).
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DN. At a knot cj ∈ MDN the Mixed Dirichlet-Neumann BVP in the
setting: 

∆u(x) = f (x), x ∈ Ωαj ,

u+(t) = g(t), on R+,

(∂x2u)+(t) = h(t), on Rαj .

(10.6)

u ∈ GHs
p(Ωαj , t

βj ), f ∈ GHs−2
p (Ωαj , t

βj ),

g ∈ GWs−1/p
p (Γαj , t

βj ), h ∈ GWs−1−1/p
p (Γαj , t

βj ).
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Theorem
(Local Principle). The initial mixed boundary value problem (10.1)
in the non-classical setting (10.3) is Fredholm if and only if all
model BVPs (10.4), (10.5)and (10.6) are Fredholm.

The model BVPs (10.4), (10.5) and (10.6) have at most one
solution in the space H1(Ωα) in the classical setting.
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Theorem

Let αj ∈ (0,2π), βj =
1 + αj

p
, j = 1,2 . . . ,n. The mixed BVP (10.1) is

Fredholm in the setting (10.3) if and only if:

βj ̸= (π − αj)/(2π − αj) for all cj ∈ MDD, (10.7)
βj ̸= π(2π − αj), for all cj ∈ MNN , (10.8)

βj ̸= (3π − 2αj)/(4π − 2αj), (π −αj)/(2π − αj), (2αj − π)/(2αj)

for all cj ∈ MDN . (10.9)

Outline of the proof: We apply the standard potential method and
derive the equivalent Boundary Integral Equations (BIEs) for our
three model BVPs. Here we expose only one:
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DD. At a point cj ∈ MDD the equivalent 2 × 2 system of BIE to the
model Dirichlet BVP is:

ADDΨ :=

 I
1
2

[
K 1

eiαj + K 1
ei(2π−αj )

]
1
2

[
K 1

eiαj + K 1
ei(2π−αj )

]
I

Ψ = G, (10.10)

where Ψ = (Ψ1,Ψ2)
⊤, G = (G1,G2)

⊤ ∈ GWs−1/p
p (R+, tβj ) and

K 1
e±iαψ(t) :=

1
π

∫ ∞

0

ψ(τ)dτ
t − e±iατ

=
1
π

∫ ∞

0

ψ(τ)
t
τ
− e±iα

dτ
τ
, 0 < α < π.

is a Mellin convolution and its symbol (the Mellin transform Mβj of
the kernel) is:
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K 1
eiω(ξ) =

ei(ω−π)(βj+iξ−1)

sinπ(βj + iξ)
, βj =

γj + 1
p

, 0 < ω < π.

Then the symbol of ADD is

ADD(ξ) =

 1
cos(π − αj)(βj + iξ − 1)

sinπ(βj + iξ)
cos(π − αj)(βj + iξ − 1)

sinπ(βj + iξ)
1


and

detADD(ξ) =
cos(2π − αj)(βj + iξ − 1) cosαj(βj + iξ − 1)

sin2 π(βj + iξ)
̸= 0.

is necessary and sufficient condition for the invertibility.
Similarly are investigated the model Neumann-Neumann and

Dirichlet-Neumann BVPs.
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11. GLOBAL PSEUDO-DIFFERENTIAL
OPERATORS ON THE LIE GROUP G = (−1,1)n

With Duván Cardona, Arne Hendrickx & Michael Ruzhansky
In the recent work (submitted for publication) we characterise the
Hörmander classes on the open manifold G = (−1,1)n. We show
that by endowing the open manifold G = (−1,1)n with a group
structure, the corresponding global Fourier analysis on the group
allows to define a global notion of symbol on the phase space
G × Rn. We study the class of pseudo-differential operators
Ψm

ρ,δ(G × Rn) associated with the global Hörmander classes
Sm
ρ,δ(G × Rn). Are proved, in particular, Lp-Fefferman type

estimates and Calderón-Vaillancourt theorems, formulas for the
composition, Gohberg lemma on compactness, new theorems on
boundedness of ΨDOs with non-classical symbols, having
jump-type discontinuities on Rn. We prove also
Atyah-Singer-Fedosov Index formula for elliptic ΨDOs with elliptic
matrix symbols from the Hörmander classes Sm

ρ,δ(G × Rn).
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Thank you!
Questions?
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