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D = {z ∈ C : |z| < 1}, the unit disc in C.

Hol(D) is the space of all analytic functions in D.

Composition operators

Let ϕ be analytic in D with ϕ(D) ⊂ D. The operator
Cϕ : Hol(D)→ Hol(D) defined by

Cϕ(f ) = f ◦ ϕ, f ∈ Hol(D),

is called the composition operator with symbol ϕ.

Cϕ is a linear operator.
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Superposition operators
Given an entire function ϕ, the superposition operator
Sϕ : Hol(D) −→ Hol(D) is defined by

Sϕ(f ) = ϕ ◦ f .

Question
If X and Y are two (Banach) subspaces of Hol(D), for which
entire functions ϕ does the operator Sϕ map (continuously) X
into Y ?

Remark
In general Sϕ is not linear.
In fact, it is easy to see that Sϕ is linear if and only if ϕ is of the
form ϕ(z) = λz, λ being a constant.
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It is clear that if Y contains the constant functions, and if ϕ is
constant then we have that Sϕ maps X into Y .

If ϕ(z) = z, then Sϕ(f ) = f for every f ∈ Hol(D), and, hence,

Sϕ(X ) ⊂ Y ⇔ X ⊂ Y .

Informally, we can say that if X ⊂ Y , the answer to our question
tells us ‘how small is X compared with Y ’.
If there are a lot of ϕ’s for which Sϕ(X ) ⊂ Y , X is ‘small
compared Y ’.
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X and Y subspaces of Hol(D). We want to characterize those
entire functions ϕ which act from X to Y by superposition.

It turns out that a number of distinct ideas can be used to deal
with this problem depending on the spaces under
consideration.

In this talk, I am going to try to present some of these ideas
with a number of works I have made over the last few years in
collaboration with
M. A. Márquez, P. Galanopoulos, and S. Domínguez.

Daniel Girela Superposition operators ...



X and Y subspaces of Hol(D). We want to characterize those
entire functions ϕ which act from X to Y by superposition.

It turns out that a number of distinct ideas can be used to deal
with this problem depending on the spaces under
consideration.

In this talk, I am going to try to present some of these ideas
with a number of works I have made over the last few years in
collaboration with
M. A. Márquez, P. Galanopoulos, and S. Domínguez.

Daniel Girela Superposition operators ...



X and Y subspaces of Hol(D). We want to characterize those
entire functions ϕ which act from X to Y by superposition.

It turns out that a number of distinct ideas can be used to deal
with this problem depending on the spaces under
consideration.

In this talk, I am going to try to present some of these ideas
with a number of works I have made over the last few years in
collaboration with
M. A. Márquez, P. Galanopoulos, and S. Domínguez.

Daniel Girela Superposition operators ...



Hardy spaces

If 0 < p ≤ ∞, the Hardy space Hp consists of those
f ∈ Hol(D) such that ‖f‖Hp

def
= sup0<r<1 Mp(r , f ) <∞.

Mp(r , f ) =
(

1
2π

∫ ∞
0
|f (reit)|p dt

)1/p

.

M∞(r , f ) = sup
|z|=r
|f (z)|.
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Bergman and Dirichlet spaces

For 0 < p <∞ and α > −1 the weighted Bergman space Ap
α

consists of those f ∈ Hol(D) such that

‖f‖Ap
α

def
=

(
(α+ 1)

∫
D
(1− |z|2)α|f (z)|p dA(z)

)1/p

<∞.

The unweighted Bergman space Ap
0 is simply denoted by Ap.

The space of Dirichlet type Dp
α consists of those f ∈ Hol(D)

such that f ′ ∈ Ap
α.
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BMOA and the Bloch space

The space BMOA consists of those functions f ∈ H1 whose
boundary values function has bounded mean oscillation, that is,
lies in BMO(TTT).
The Bloch space B is the space of all functions f ∈ Hol(D) for
which

‖f‖B = |f (0)|+ sup
z∈D

(1− |z|2)|f ′(z)| <∞.

We have the inclusions

BMOA ⊂ B, H∞ ⊂ BMOA ⊂
⋂

0<p<∞
Hp.
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Some results previous to our work

Let ϕ be an entire function.

For 0 < p,q <∞, the superposition operator Sϕ maps Hp into
Hq, or Ap into Aq, if and only ϕ is a polynomial of degree less
than or equal to p/q. [Cámera and Cámera and Giménez].

Buckley, Fernández and Vukotić studied superposition
operators acting between the Dirichlet type spaces Dp

0 and Dq
0 .

Álvarez, Márquez and Vukotić studied superposition operators
acting between the Bloch space and Bergman spaces.

ϕ acts from Ap into B by superposition if and only if ϕ is
constant.
ϕ acts from B into Ap by superposition if and only if ϕ has
order less than one, or order one and type 0.
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The results we have stated and, actually, all the results we
know in this setting have the following in common:
If ϕ acts from X to Y by superposition then so does ϕ′.

Question
Is this always true?
Or, at least ... find a general theorem in this line . . .

In collaboration with S. Domínguez (2019) we have found some
classes of spaces Y with the property that if ϕ is an entire
function which acts from a certain space X into Y by
superposition then so does ϕ′.
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Spaces of analytic functions with restricted growth

A weight v on D will be a positive and continuous function
defined on D which is radial, i. e. v(z) = v(|z|), for all z ∈ D,
and satisfying that v(r) is strictly decreasing in [0,1) and that
limr→1 v(r) = 0. For such a weight, the weighted Banach space
H∞v is defined by

H∞v =

{
f ∈ Hol(D) : ‖f‖v

def
= sup

z∈D
v(z)|f (z)| <∞

}
.

We have proved that our above aim is obtained if we take
Y = H∞v .
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Theorem
Let v be weight on D and let (X , ‖ · ‖) be a Banach space of
analytic function in D. Let ϕ be an entire function. If the
superposition operator Sϕ is a bounded operator from X into
H∞v , then Sϕ′ maps X into H∞v .
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Basic steps in the proof
Suppose Sϕ is a bounded operator form X into H∞v . Take
f ∈ X , then we prove:

If |f (z)| ≤ 1 then
∣∣Sϕ′(f )(z)

∣∣ ≤ Av(0)
v(z) with

A = sup|ξ|≤1 |ϕ′(ξ)|.
If |f (z)| ≥ 1 then

∣∣Sϕ′(f )(z)
∣∣ ≤ 1

2
|Sϕ(g)(z)| ,

for a certain g ∈ X (which depends on z) and satisfies
‖g‖ = ‖f‖.
Putting these two things together we find C > 0 such that∣∣Sϕ′(f )(z)

∣∣ ≤ C
v(z) . This gives Sϕ′(f ) ∈ H∞v .
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If v is a weight on D, we define DH∞v as follows

DH∞v =
{

f ∈ Hol(D) : f ′ ∈ H∞v
}
.

The space DH∞v is a Banach space with the norm ‖ · ‖D,v
defined by

‖f‖D,v = |f (0)| + ‖f ′‖v .

Theorem
Let v be a weight on D and let (X , ‖ · ‖) be a Banach space of
analytic function in D. Let ϕ be an entire function. If the
superposition operator Sϕ is a bounded operator from X into
DH∞v , then Sϕ′ maps X into DH∞v .
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If we take v(z) = (1− |z|), the space DH∞v reduces to the
Bloch space. Hence, as a particular case we obtain.

Corollary

Let (X , ‖ · ‖) be a Banach space of analytic function in D. Let ϕ
be an entire function. If the superposition operator Sϕ is a
bounded operator from X into the Bloch space B, then Sϕ′

maps X into B.
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Sets of zeros as a tool

Let us recall one the results I mentioned before.

Theorem (AMV). Suppose 0 < p <∞ and ϕ is an entire
function. If ϕ acts from Ap into B under superposition, then ϕ is
constant.

The original proof uses a number of results on conformal
mappings.
We have used different ideas to prove the following extension.
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Theorem (D-G)
Suppose that 0 < p <∞, α > −1 and let ϕ be an entire
function. If Sϕ(A

p
α) ⊂ B then ϕ is constant.

The ingredient in our proof is that there exists ‘a zero sequence
of Ap

α’ which is not ‘a zero sequence of B’.
Indeed, it is known (G-Nowak-Waniurski-2000) that if {zk} is
the sequence of zeros of a function f ∈ B with f (0) 6= 0 then

n∏
k=1

1
|zk |

= O
(
(log n)1/2

)
.(∗)

While (Horowitz-1974) proved that for any given ε > 0, there
exist g ∈ Ap

α with g(0) 6= 0 whose sequence of zeros {zk}
satisfies

n∏
k=1

1
|zk |

6= O
(

n(1+α)/(p(1+ε))
)
.(∗∗)
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the sequence of zeros of a function f ∈ B with f (0) 6= 0 then

n∏
k=1

1
|zk |

= O
(
(log n)1/2

)
.(∗)

While (Horowitz-1974) proved that for any given ε > 0, there
exist g ∈ Ap

α with g(0) 6= 0 whose sequence of zeros {zk}
satisfies

n∏
k=1

1
|zk |

6= O
(

n(1+α)/(p(1+ε))
)
.(∗∗)
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Suppose ϕ is not constant and Sϕ(A
p
α) ⊂ B.

Take g ∈ Ap
α, g 6≡ 0 whose sequence of zeros satisfies (**) for

some ε > 0.
We have that Sϕ(g) = ϕ ◦ g ∈ B and ϕ ◦ g is not constant.
Set F = Sϕ(g) − ϕ(0). We have that

F = Sϕ(g) − ϕ(0) = ϕ ◦ g − ϕ(0) ∈ B, and F 6≡ 0.

Now, all the zeros of g are zeros of F . In other words, the
sequence {zk} is contained in the sequence {ξk} of zeros of
F . Since {zk} satisfies (**), {ξk} does not satisfies (*). This
contradicts the fact that F ∈ B.
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Let X and Y be two spaces of analytic functions in D satisfying
the following conditions:

(i) X contains the constants.
(ii) There exists a function f ∈ X with f (0) 6= 0 whose

sequence of zeros {zk} is not a subsequence of a
sequence of zeros of Y .

Let ϕ be an entire funtion. Then ϕ acts from X into Y by
superposition if and only if ϕ is constant. .
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Hardy space, Dp
p−1-spaces, BMOA, B

Among all the spaces of Dirichlet type Dp
α, the spaces Dp

p−1 are
the closest ones to Hardy spaces.

Dp
p−1 ⊂ Hp ⊂ A2p, 0 < p ≤ 2.

Hp ⊂ Dp
p−1 ⊂ A2p, 2 ≤ p <∞.
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Similarities
For 0 < p ≤ 2, the Carleson measures for Hp and those for
Dp

p−1 are the same.

The univalent functions in Hp and Dp
p−1 (0 < p <∞) are

the same (BGP2004).
A number of operators are bounded on Hp iff and only if
they are bounded for Dp

p−1.

In some cases, it is useful to go through Dp
p−1 when one

wants to study the action of an operator on Hp.
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Differences

H∞ 6⊂ Dp
p−1,if 0 < p < 2.

There are Blaschke products not belonging to any of the
Dp

p−1-spaces, 0 < p < 2.

For p > 2, there are functions in Dp
p−1 without radial limits.

There is no inclusion relation between Dp
p−1 and Dq

q−1,
p 6= q.
The zero sequence of a Dp

p−1-function, p > 2, may not
satisfy the Blaschke condition.
Even though it was conjectured that that the Carleson
measures for Dp

p−1 (p > 2) were the same, this is not true
(GP2006).
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Objective
Studying similarities and differences between Hardy spaces
and Dp

p−1-spaces regarding superposition operators.

Let us consider superposition operators between the Hardy
spaces and the spaces BMOA and the Bloch space B, and
compare them with those between the Dp

p−1-spaces and BMOA
or B.
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Superposition operators between BMOA spaces and
Hardy spaces

In a work in collaboration with M. A. Márquez we proved the
following.

Theorem
Let ϕ be an entire function. Then
(a) For 0 < p <∞, Sϕ(B) ⊂ Hp if and only if ϕ is constant.
(b) For 0 < p <∞, Sϕ(BMOA) ⊂ Hp if and only if ϕ is of order

less than one, or of order one and type zero.

(a) can be proved using the idea on the zero sequences.
(b) is more difficult. I am not going to give the details. We use
the John-Niremberg theorem.
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Superposition operators from the Bloch space into
Dp

p−1-spaces

We know that for any p

Sϕ(B) ⊂ Hp ⇔ ϕ is constant.

Since Dp
p−1 ⊂ Hp for p ≤ 2, this implies:

If 0 < p ≤ 2, then Sϕ(B) ⊂ Dp
p−1 if and only if ϕ is constant.

What about the case 2 < p <∞?
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Superposition operators from B into Dp
p−1, 2 < p <∞

There are function in Dp
p−1 (p > 2) whose sequence of zeros do

not satisfy the Blaschke condition. So...

More precise results about the zero sequences of Bloch
functions and Dp

p−1-functions

Suppose f ∈ B with f (0) 6= 0 and let {an} be the (ordered)
sequence of the zeros of f . Then

N∏
n=1

1
|an|

= O
(
(logN)1/2

)
, as N →∞.

This is sharp: There exists f ∈ B for which

N∏
n=1

1
|an|
6= o

(
(logN)1/2

)
.
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For Dp
p−1-functions we have the following result.

Suppose 2 < p <∞ and f ∈ B with f (0) 6= 0. Let {an} be the
(ordered) sequence of the zeros of f . Then

N∏
n=1

1
|an|

= O
(
(logN)

1
2−

1
p

)
, as N →∞.
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Suppose 2 < p <∞, and Sϕ(B) ⊂ Dp
p−1.

Take f ∈ B with f (0) 6= 0 whose sequence of zeros {an}
satisfies

N∏
n=1

1
|an|
6= o

(
(logN)1/2

)
.

Set g(z) = ϕ ◦ f (z)− ϕ(0).
If g ≡ 0 then ϕ is constant.
If g 6≡ 0 then g ∈ Dp

p−1 and, hence, its sequence of zeros {zn}
satisfies

N∏
n=1

1
|zn|

= O
(
(logN)

1
2−

1
p

)
= o

(
(logN)1/2

)
.

But the a′ns are zeros of g... contradiction.
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We have:

Theorem
Suppose 0 < p <∞ and let ϕ be an entire function. Then the
following are equivalent:

Sϕ(B) ⊂ Hp.
Sϕ(B) ⊂ Dp

p−1.
ϕ is constant.
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Superposition operators from BMOA into Dp
p−1,

2 ≤ p <∞.

Recall: Sϕ(BMOA) ⊂ Hp if and only if ϕ is of order less than
one, or of order one and type zero.
Also true: Sϕ(BMOA) ⊂ Ap if and ϕ is of order less than one, or
of order one and type zero.
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p−1 ⊂ A2p, it follows
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Superposition operators from BMOA into Dp
p−1,

0 < p < 2

For these values of p the ϕ’s for which Sϕ(BMOA) ⊂ Dp
p−1 do

not coincide with those for which Sϕ(BMOA) ⊂ Hp.
We have:

Theorem
Suppose that 0 < p < 2 and let ϕ be an entire function. Then

Sϕ(BMOA) ⊂ Dp
p−1 ⇔ ϕ constant.
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Proof

Suppose 0 < p < 2, ϕ is non-constant, and Sϕ(BMOA) ⊂ Dp
p−1.

Take f ∈ H∞ ⊂ BMOA such that∫ 1

0
(1− r)p−1|f ′(reiθ)|p dr =∞, for a. e. θ.

ϕ′ 6≡ 0 and then

ϕ′ ◦ f ∈ H∞ and ϕ′ ◦ f 6≡ 0.

It follows that ϕ′ ◦ f has a non-zero radial limit almost
everywhwere.
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Sϕ(f ) ∈ Dp
p−1, that is,∫
D
(1− |z|)p−1|f ′(z)|p|ϕ′(f (z))|p dA(z) <∞.

Equivalently,∫ 2π

0

∫ 1

0
(1− r)p−1|f ′(reiθ)|p

∣∣∣ϕ′ (f (reiθ)
)∣∣∣p dr dθ <∞.

This implies that∫ 1

0
(1− r)p−1|f ′(reiθ)|p

∣∣∣ϕ′ (f (reiθ)
)∣∣∣p dr <∞, for a. e. θ.

But, since ϕ′ ◦ f has a non-zero radial limit almost everywhere,
this implies that∫ 1

0
(1− r)p−1|f ′(reiθ)|p dr <∞, for a. e. θ.

Contradiction.
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