Superposition operators acting on spaces of analytic functions

Daniel Girela Universidad de Málaga, Spain

International biweekly online Seminar on Analysis, Differential Equations and Mathematical Physics

May 4, 2023

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

 $\operatorname{Hol}(\mathbb{D})$ is the space of all analytic functions in \mathbb{D} .

Composition operators

Let φ be analytic in \mathbb{D} with $\varphi(\mathbb{D}) \subset \mathbb{D}$. The operator $C_{\varphi} : \operatorname{Hol}(\mathbb{D}) \to \operatorname{Hol}(\mathbb{D})$ defined by

$$\mathcal{C}_{arphi}(f)=f\circarphi,\quad f\in\mathrm{Hol}(\mathbb{D}),$$

is called the composition operator with symbol φ .

 C_{φ} is a linear operator.

Hol(\mathbb{D}) is the space of all analytic functions in \mathbb{D} .

Composition operators

Let φ be analytic in \mathbb{D} with $\varphi(\mathbb{D}) \subset \mathbb{D}$. The operator $C_{\varphi} : \operatorname{Hol}(\mathbb{D}) \to \operatorname{Hol}(\mathbb{D})$ defined by

$$\mathcal{C}_{arphi}(f)=f\circarphi,\quad f\in\mathrm{Hol}(\mathbb{D}),$$

is called the composition operator with symbol φ .

 C_{φ} is a linear operator.

→ 御 → ★ 注 → ★ 注 →

 $\operatorname{Hol}(\mathbb{D})$ is the space of all analytic functions in \mathbb{D} .

Composition operators

Let φ be analytic in \mathbb{D} with $\varphi(\mathbb{D}) \subset \mathbb{D}$. The operator $C_{\varphi} : \operatorname{Hol}(\mathbb{D}) \to \operatorname{Hol}(\mathbb{D})$ defined by

$$\mathcal{C}_{arphi}(f)=f\circarphi,\quad f\in\mathrm{Hol}(\mathbb{D}),$$

is called the composition operator with symbol arphi.

 C_{φ} is a linear operator.

イロト イポト イヨト イヨト

 $\operatorname{Hol}(\mathbb{D})$ is the space of all analytic functions in \mathbb{D} .

Composition operators

Let φ be analytic in \mathbb{D} with $\varphi(\mathbb{D}) \subset \mathbb{D}$. The operator $C_{\varphi} : \operatorname{Hol}(\mathbb{D}) \to \operatorname{Hol}(\mathbb{D})$ defined by

$$C_{\varphi}(f) = f \circ \varphi, \quad f \in \operatorname{Hol}(\mathbb{D}),$$

is called the composition operator with symbol φ .

 C_{φ} is a linear operator.

イロト イポト イヨト イヨト

 $\operatorname{Hol}(\mathbb{D})$ is the space of all analytic functions in \mathbb{D} .

Composition operators

Let φ be analytic in \mathbb{D} with $\varphi(\mathbb{D}) \subset \mathbb{D}$. The operator $C_{\varphi} : \operatorname{Hol}(\mathbb{D}) \to \operatorname{Hol}(\mathbb{D})$ defined by

$$C_{\varphi}(f) = f \circ \varphi, \quad f \in \operatorname{Hol}(\mathbb{D}),$$

is called the composition operator with symbol φ .

 C_{φ} is a linear operator.

ヘロン 人間 とくほ とくほ とう

Given an entire function φ , the superposition operator S_{φ} : Hol(\mathbb{D}) \longrightarrow Hol(\mathbb{D}) is defined by

 $S_{\varphi}(f) = \varphi \circ f.$

Question

If X and Y are two (Banach) subspaces of Hol(\mathbb{D}), for which entire functions φ does the operator S_{φ} map (continuously) X into Y?

Remark

In general S_{φ} is not linear. In fact, it is easy to see that S_{φ} is linear i

form $\varphi(z) = \lambda z$, λ being a constant.

イロン イロン イヨン イヨン

Given an entire function φ , the superposition operator S_{φ} : Hol(\mathbb{D}) \longrightarrow Hol(\mathbb{D}) is defined by

 $S_{\varphi}(f) = \varphi \circ f.$

Question

If X and Y are two (Banach) subspaces of Hol(\mathbb{D}), for which entire functions φ does the operator S_{φ} map (continuously) X into Y?

Remark

In general S_arphi is not linear.

In fact, it is easy to see that S_{φ} is linear if and only if φ is of the form $\varphi(z) = \lambda z$, λ being a constant.

くロト (過) (目) (日)

Given an entire function φ , the superposition operator $S_{\varphi} : \operatorname{Hol}(\mathbb{D}) \longrightarrow \operatorname{Hol}(\mathbb{D})$ is defined by

$$S_{\varphi}(f) = \varphi \circ f.$$

Question

If X and Y are two (Banach) subspaces of Hol(\mathbb{D}), for which entire functions φ does the operator S_{φ} map (continuously) X into Y?

Remark

In general S_{ω} is not linear.

In fact, it is easy to see that S_{φ} is linear if and only if φ is of the form $\varphi(z) = \lambda z$, λ being a constant.

◆□ > ◆□ > ◆豆 > ◆豆 > -

Given an entire function φ , the superposition operator S_{φ} : Hol(\mathbb{D}) \longrightarrow Hol(\mathbb{D}) is defined by

 $S_{\varphi}(f) = \varphi \circ f.$

Question

If X and Y are two (Banach) subspaces of $Hol(\mathbb{D})$, for which entire functions φ does the operator S_{φ} map (continuously) X into Y?

Remark

In general S_{φ} is not linear. In fact, it is easy to see that S_{φ} is linear if and only if φ is of the form $\varphi(z) = \lambda z$, λ being a constant.

ヘロト 人間 ト ヘヨト ヘヨト

Given an entire function φ , the superposition operator S_{φ} : Hol(\mathbb{D}) \longrightarrow Hol(\mathbb{D}) is defined by

 $S_{\varphi}(f) = \varphi \circ f.$

Question

If X and Y are two (Banach) subspaces of $Hol(\mathbb{D})$, for which entire functions φ does the operator S_{φ} map (continuously) X into Y?

Remark

In general S_{ω} is not linear.

In fact, it is easy to see that S_{φ} is linear if and only if φ is of the form $\varphi(z) = \lambda z$, λ being a constant.

ヘロト ヘアト ヘビト ヘビト

If
$$\varphi(z) = z$$
, then $S_{\varphi}(f) = f$ for every $f \in \operatorname{Hol}(\mathbb{D})$, and, hence, $S_{\varphi}(X) \subset Y \Leftrightarrow X \subset Y.$

Informally, we can say that if $X \subset Y$, the answer to our question tells us 'how small is X compared with Y'. If there are a lot of φ 's for which $S_{\varphi}(X) \subset Y$, X is 'small compared Y'.

If $\varphi(z) = z$, then $S_{\varphi}(f) = f$ for every $f \in Hol(\mathbb{D})$, and, hence,

 $S_{\varphi}(X) \subset Y \Leftrightarrow X \subset Y.$

Informally, we can say that if $X \subset Y$, the answer to our question tells us 'how small is *X* compared with *Y*'. If there are a lot of φ 's for which $S_{\varphi}(X) \subset Y$, *X* is 'small compared *Y*'.

If $\varphi(z) = z$, then $S_{\varphi}(f) = f$ for every $f \in Hol(\mathbb{D})$, and, hence,

 $S_{\varphi}(X) \subset Y \Leftrightarrow X \subset Y.$

Informally, we can say that if $X \subset Y$, the answer to our question tells us 'how small is X compared with Y'. If there are a lot of φ 's for which $S_{\varphi}(X) \subset Y$, X is 'small compared Y'.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

If $\varphi(z) = z$, then $S_{\varphi}(f) = f$ for every $f \in Hol(\mathbb{D})$, and, hence,

 $S_{\varphi}(X) \subset Y \Leftrightarrow X \subset Y.$

Informally, we can say that if $X \subset Y$, the answer to our question tells us 'how small is *X* compared with *Y*'. If there are a lot of φ 's for which $S_{\varphi}(X) \subset Y$, *X* is 'small compared *Y*'.

・聞き ・ヨト ・ヨト

X and *Y* subspaces of $Hol(\mathbb{D})$. We want to characterize those entire functions φ which act from *X* to *Y* by superposition.

It turns out that a number of distinct ideas can be used to deal with this problem depending on the spaces under consideration.

In this talk, I am going to try to present some of these ideas with a number of works I have made over the last few years in collaboration with

M. A. Márquez, P. Galanopoulos, and S. Domínguez.

< 回 > < 回 > < 回 >

X and *Y* subspaces of $Hol(\mathbb{D})$. We want to characterize those entire functions φ which act from *X* to *Y* by superposition.

It turns out that a number of distinct ideas can be used to deal with this problem depending on the spaces under consideration.

In this talk, I am going to try to present some of these ideas with a number of works I have made over the last few years in collaboration with

M. A. Márquez, P. Galanopoulos, and S. Domínguez.

・ 回 ト ・ ヨ ト ・ ヨ ト

X and *Y* subspaces of $Hol(\mathbb{D})$. We want to characterize those entire functions φ which act from *X* to *Y* by superposition.

It turns out that a number of distinct ideas can be used to deal with this problem depending on the spaces under consideration.

In this talk, I am going to try to present some of these ideas with a number of works I have made over the last few years in collaboration with

M. A. Márquez, P. Galanopoulos, and S. Domínguez.

Hardy spaces

If $0 , the Hardy space <math>H^p$ consists of those $f \in \operatorname{Hol}(\mathbb{D})$ such that $\|f\|_{H^p} \stackrel{\text{def}}{=} \sup_{0 < r < 1} M_p(r, f) < \infty$.

$$M_{p}(r,f) = \left(\frac{1}{2\pi} \int_{0}^{\infty} |f(re^{it})|^{p} dt\right)^{1/p}.$$
$$M_{\infty}(r,f) = \sup_{|z|=r} |f(z)|.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Bergman and Dirichlet spaces

For $0 and <math>\alpha > -1$ the weighted Bergman space A^{ρ}_{α} consists of those $f \in Hol(\mathbb{D})$ such that

$$\|f\|_{\mathcal{A}^p_{\alpha}} \stackrel{\mathrm{def}}{=} \left((\alpha+1) \int_{\mathbb{D}} (1-|z|^2)^{\alpha} |f(z)|^p \, d\mathcal{A}(z) \right)^{1/p} < \infty.$$

The unweighted Bergman space A_0^{ρ} is simply denoted by A^{ρ} .

The space of Dirichlet type $\mathcal{D}^{\rho}_{\alpha}$ consists of those $f \in Hol(\mathbb{D})$ such that $f' \in A^{\rho}_{\alpha}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Bergman and Dirichlet spaces

For $0 and <math>\alpha > -1$ the weighted Bergman space A^{ρ}_{α} consists of those $f \in Hol(\mathbb{D})$ such that

$$\|f\|_{\mathcal{A}^p_{\alpha}} \stackrel{\mathrm{def}}{=} \left((\alpha+1) \int_{\mathbb{D}} (1-|z|^2)^{\alpha} |f(z)|^p \, d\mathcal{A}(z) \right)^{1/p} < \infty.$$

The unweighted Bergman space A_0^p is simply denoted by A^p . The space of Dirichlet type \mathcal{D}_{α}^p consists of those $f \in Hol(\mathbb{D})$ such that $f' \in A_{\alpha}^p$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

BMOA and the Bloch space

The space *BMOA* consists of those functions $f \in H^1$ whose boundary values function has bounded mean oscillation, that is, lies in *BMO*(**T**).

The Bloch space \mathcal{B} is the space of all functions $f \in Hol(\mathbb{D})$ for which

$$\|f\|_{\mathcal{B}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty.$$

We have the inclusions

 $BMOA \subset \mathcal{B}, \qquad H^{\infty} \subset BMOA \subset \bigcap_{0$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

BMOA and the Bloch space

The space *BMOA* consists of those functions $f \in H^1$ whose boundary values function has bounded mean oscillation, that is, lies in *BMO*(**T**).

The Bloch space \mathcal{B} is the space of all functions $f \in \operatorname{Hol}(\mathbb{D})$ for which

$$\|f\|_{\mathcal{B}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty.$$

We have the inclusions

 $BMOA \subset \mathcal{B}, \qquad H^{\infty} \subset BMOA \subset \bigcap_{0$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

BMOA and the Bloch space

The space *BMOA* consists of those functions $f \in H^1$ whose boundary values function has bounded mean oscillation, that is, lies in *BMO*(**T**).

The Bloch space \mathcal{B} is the space of all functions $f \in \operatorname{Hol}(\mathbb{D})$ for which

$$\|f\|_{\mathcal{B}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty.$$

We have the inclusions

$$BMOA \subset \mathcal{B}, \qquad H^{\infty} \subset BMOA \subset \bigcap_{0$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Some results previous to our work

Let φ be an entire function.

For $0 < p, q < \infty$, the superposition operator S_{φ} maps H^{p} into H^{q} , or A^{p} into A^{q} , if and only φ is a polynomial of degree less than or equal to p/q. [Cámera and Cámera and Giménez].

Buckley, Fernández and Vukotić studied superposition operators acting between the Dirichlet type spaces \mathcal{D}_0^p and \mathcal{D}_0^q .

Álvarez, Márquez and Vukotić studied superposition operators acting between the Bloch space and Bergman spaces.

- φ acts from A^{ρ} into \mathcal{B} by superposition if and only if φ is constant.
- φ acts from B into A^p by superposition if and only if φ has order less than one, or order one and type 0.

ヘロン 人間 とくほ とくほう

Some results previous to our work

Let φ be an entire function.

For $0 < p, q < \infty$, the superposition operator S_{φ} maps H^{p} into H^{q} , or A^{p} into A^{q} , if and only φ is a polynomial of degree less than or equal to p/q. [Cámera and Cámera and Giménez].

Buckley, Fernández and Vukotić studied superposition operators acting between the Dirichlet type spaces \mathcal{D}_0^p and \mathcal{D}_0^q .

Álvarez, Márquez and Vukotić studied superposition operators acting between the Bloch space and Bergman spaces.

- φ acts from A^p into B by superposition if and only if φ is constant.
- φ acts from B into A^p by superposition if and only if φ has order less than one, or order one and type 0.

ヘロン 人間 とくほ とくほう

Some results previous to our work

Let φ be an entire function.

For $0 < p, q < \infty$, the superposition operator S_{φ} maps H^{p} into H^{q} , or A^{p} into A^{q} , if and only φ is a polynomial of degree less than or equal to p/q. [Cámera and Cámera and Giménez].

Buckley, Fernández and Vukotić studied superposition operators acting between the Dirichlet type spaces \mathcal{D}_0^p and \mathcal{D}_0^q .

Álvarez, Márquez and Vukotić studied superposition operators acting between the Bloch space and Bergman spaces.

- φ acts from A^p into B by superposition if and only if φ is constant.
- φ acts from B into A^p by superposition if and only if φ has order less than one, or order one and type 0.

ヘロト ヘ戸ト ヘヨト ヘヨト

The results we have stated and, actually, all the results we know in this setting have the following in common:

If φ acts from X to Y by superposition then so does φ' .

Question

Is this always true? Or, at least ... find a general theorem in this line ...

In collaboration with S. Domínguez (2019) we have found some classes of spaces Y with the property that if φ is an entire function which acts from a certain space X into Y by superposition then so does φ' .

・ 同 ト ・ ヨ ト ・ ヨ ト

Question

Is this always true? Or, at least ... find a general theorem in this line ...

In collaboration with S. Domínguez (2019) we have found some classes of spaces Y with the property that if φ is an entire function which acts from a certain space X into Y by superposition then so does φ' .

・ 同 ト ・ ヨ ト ・ ヨ ト

Question

Is this always true?

Or, at least ... find a general theorem in this line ...

In collaboration with S. Domínguez (2019) we have found some classes of spaces Y with the property that if φ is an entire function which acts from a certain space X into Y by superposition then so does φ' .

▲□ ▶ ▲ 三 ▶ ▲

Question

Is this always true? Or, at least ... find a general theorem in this line ...

In collaboration with S. Domínguez (2019) we have found some classes of spaces Y with the property that if φ is an entire function which acts from a certain space X into Y by superposition then so does φ' .

・ 同 ト ・ ヨ ト ・ ヨ ト

Question

Is this always true? Or, at least ... find a general theorem in this line ...

In collaboration with S. Domínguez (2019) we have found some classes of spaces *Y* with the property that if φ is an entire function which acts from a certain space *X* into *Y* by superposition then so does φ' .

・ 戸 ・ ・ 三 ・ ・

Spaces of analytic functions with restricted growth

A weight v on \mathbb{D} will be a positive and continuous function defined on \mathbb{D} which is radial, i. e. v(z) = v(|z|), for all $z \in \mathbb{D}$, and satisfying that v(r) is strictly decreasing in [0, 1) and that $\lim_{r\to 1} v(r) = 0$. For such a weight, the weighted Banach space H_v^{∞} is defined by

$$H_{v}^{\infty} = \left\{ f \in \operatorname{Hol}(\mathbb{D}) : \|f\|_{v} \stackrel{\text{def}}{=} \sup_{z \in \mathbb{D}} v(z)|f(z)| < \infty
ight\}.$$

We have proved that our above aim is obtained if we take $Y = H_v^{\infty}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへの

Spaces of analytic functions with restricted growth

A weight v on \mathbb{D} will be a positive and continuous function defined on \mathbb{D} which is radial, i. e. v(z) = v(|z|), for all $z \in \mathbb{D}$, and satisfying that v(r) is strictly decreasing in [0, 1) and that $\lim_{r\to 1} v(r) = 0$. For such a weight, the weighted Banach space H_v^{∞} is defined by

$$H^{\infty}_{v} = \left\{ f \in \operatorname{Hol}(\mathbb{D}) : \|f\|_{v} \stackrel{\mathsf{def}}{=} \sup_{z \in \mathbb{D}} v(z)|f(z)| < \infty
ight\}.$$

We have proved that our above aim is obtained if we take $Y = H_v^{\infty}$.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Spaces of analytic functions with restricted growth

A weight v on \mathbb{D} will be a positive and continuous function defined on \mathbb{D} which is radial, i. e. v(z) = v(|z|), for all $z \in \mathbb{D}$, and satisfying that v(r) is strictly decreasing in [0, 1) and that $\lim_{r\to 1} v(r) = 0$. For such a weight, the weighted Banach space H_v^{∞} is defined by

$$H^{\infty}_{v} = \left\{ f \in \operatorname{Hol}(\mathbb{D}) : \|f\|_{v} \stackrel{\text{def}}{=} \sup_{z \in \mathbb{D}} v(z)|f(z)| < \infty
ight\}.$$

We have proved that our above aim is obtained if we take $Y = H_v^{\infty}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Theorem

Let v be weight on \mathbb{D} and let $(X, \|\cdot\|)$ be a Banach space of analytic function in \mathbb{D} . Let φ be an entire function. If the superposition operator S_{φ} is a bounded operator from X into H_v^{∞} , then $S_{\varphi'}$ maps X into H_v^{∞} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの
Suppose S_{φ} is a bounded operator form *X* into H_{v}^{∞} . Take $f \in X$, then we prove:

- If $|f(z)| \leq 1$ then $|S_{\varphi'}(f)(z)| \leq \frac{A\nu(0)}{\nu(z)}$ with $A = \sup_{|\xi| \leq 1} |\varphi'(\xi)|.$
- If $|f(z)| \ge 1$ then

$$ig| igSim_{arphi'}(f)(z)ig| \leq rac{1}{2} ig| S_arphi(g)(z)ig|\,,$$

for a certain $g \in X$ (which depends on *z*) and satisfies ||g|| = ||f||.

• Putting these two things together we find C > 0 such that $|S_{\varphi'}(f)(z)| \leq \frac{C}{v(z)}$. This gives $S_{\varphi'}(f) \in H_v^{\infty}$.

イロト イポト イヨト イヨト 三日

Suppose S_{φ} is a bounded operator form X into H_{v}^{∞} . Take $f \in X$, then we prove:

- If $|f(z)| \leq 1$ then $|S_{\varphi'}(f)(z)| \leq \frac{Av(0)}{v(z)}$ with $A = \sup_{|\xi| \leq 1} |\varphi'(\xi)|.$
- If $|f(z)| \ge 1$ then

$$ig| ig| S_{arphi'}(f)(z) ig| \leq rac{1}{2} ig| S_arphi(g)(z) ig|\,,$$

for a certain $g \in X$ (which depends on *z*) and satisfies ||g|| = ||f||.

• Putting these two things together we find C > 0 such that $|S_{\varphi'}(f)(z)| \leq \frac{C}{v(z)}$. This gives $S_{\varphi'}(f) \in H_v^{\infty}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Suppose S_{φ} is a bounded operator form *X* into H_{v}^{∞} . Take $f \in X$, then we prove:

- If $|f(z)| \leq 1$ then $|S_{\varphi'}(f)(z)| \leq \frac{A\nu(0)}{\nu(z)}$ with $A = \sup_{|\xi| \leq 1} |\varphi'(\xi)|$.
- If |*f*(*z*)| ≥ 1 then

$$ig|\mathcal{S}_{arphi'}(f)(z)ig| \leq rac{1}{2} \left|\mathcal{S}_{arphi}(g)(z)
ight|,$$

for a certain $g \in X$ (which depends on *z*) and satisfies $\|g\| = \|f\|$.

• Putting these two things together we find C > 0 such that $|S_{\varphi'}(f)(z)| \leq \frac{C}{v(z)}$. This gives $S_{\varphi'}(f) \in H_v^{\infty}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Suppose S_{φ} is a bounded operator form X into H_{v}^{∞} . Take $f \in X$, then we prove:

- If $|f(z)| \leq 1$ then $|S_{\varphi'}(f)(z)| \leq \frac{A\nu(0)}{\nu(z)}$ with $A = \sup_{|\xi| \leq 1} |\varphi'(\xi)|$.
- If |*f*(*z*)| ≥ 1 then

$$ig|\mathcal{S}_{arphi'}(f)(z)ig| \leq rac{1}{2} \left|\mathcal{S}_{arphi}(g)(z)
ight|,$$

for a certain $g \in X$ (which depends on *z*) and satisfies $\|g\| = \|f\|$.

• Putting these two things together we find C > 0 such that $|S_{\varphi'}(f)(z)| \leq \frac{C}{v(z)}$. This gives $S_{\varphi'}(f) \in H_v^{\infty}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

If *v* is a weight on \mathbb{D} , we define DH_v^{∞} as follows

$$DH_{v}^{\infty} = \left\{ f \in \operatorname{Hol}(\mathbb{D}) : f' \in H_{v}^{\infty} \right\}.$$

The space DH_v^∞ is a Banach space with the norm $\|\cdot\|_{D,v}$ defined by

$$||f||_{D,v} = |f(0)| + ||f'||_{v}.$$

Theorem

Let *v* be a weight on \mathbb{D} and let $(X, \|\cdot\|)$ be a Banach space of analytic function in \mathbb{D} . Let φ be an entire function. If the superposition operator S_{φ} is a bounded operator from *X* into DH_v^{∞} , then $S_{\varphi'}$ maps *X* into DH_v^{∞} .

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

If *v* is a weight on \mathbb{D} , we define DH_v^{∞} as follows

$$DH_v^{\infty} = \left\{ f \in \operatorname{Hol}(\mathbb{D}) : f' \in H_v^{\infty} \right\}.$$

The space DH_v^∞ is a Banach space with the norm $\|\cdot\|_{D,v}$ defined by

$$||f||_{D,v} = |f(0)| + ||f'||_{v}.$$

Theorem

Let *v* be a weight on \mathbb{D} and let $(X, \|\cdot\|)$ be a Banach space of analytic function in \mathbb{D} . Let φ be an entire function. If the superposition operator S_{φ} is a bounded operator from *X* into DH_v^{∞} , then $S_{\varphi'}$ maps *X* into DH_v^{∞} .

く 同 と く ヨ と く ヨ と

If we take v(z) = (1 - |z|), the space DH_v^{∞} reduces to the Bloch space. Hence, as a particular case we obtain.

Corollary

Let $(X, \|\cdot\|)$ be a Banach space of analytic function in \mathbb{D} . Let φ be an entire function. If the superposition operator S_{φ} is a bounded operator from X into the Bloch space \mathcal{B} , then $S_{\varphi'}$ maps X into \mathcal{B} .

く 同 と く ヨ と く ヨ と

If we take v(z) = (1 - |z|), the space DH_v^{∞} reduces to the Bloch space. Hence, as a particular case we obtain.

Corollary

Let $(X, \|\cdot\|)$ be a Banach space of analytic function in \mathbb{D} . Let φ be an entire function. If the superposition operator S_{φ} is a bounded operator from X into the Bloch space \mathcal{B} , then $S_{\varphi'}$ maps X into \mathcal{B} .

ヘロト ヘアト ヘビト ヘビト

Theorem (AMV). Suppose $0 and <math>\varphi$ is an entire function. If φ acts from A^p into \mathcal{B} under superposition, then φ is constant.

The original proof uses a number of results on conformal mappings. We have used different ideas to prove the following extension

Theorem (AMV). Suppose $0 and <math>\varphi$ is an entire function. If φ acts from A^p into \mathcal{B} under superposition, then φ is constant.

The original proof uses a number of results on conformal mappings. We have used different ideas to prove the following extension.

Theorem (AMV). Suppose $0 and <math>\varphi$ is an entire function. If φ acts from A^p into \mathcal{B} under superposition, then φ is constant.

The original proof uses a number of results on conformal mappings.

We have used different ideas to prove the following extension.

Theorem (AMV). Suppose $0 and <math>\varphi$ is an entire function. If φ acts from A^p into \mathcal{B} under superposition, then φ is constant.

The original proof uses a number of results on conformal mappings. We have used different ideas to prove the following extension.

Theorem (D-G)

Suppose that $0 , <math>\alpha > -1$ and let φ be an entire function. If $S_{\varphi}(A^{p}_{\alpha}) \subset \mathcal{B}$ then φ is constant.

The ingredient in our proof is that there exists 'a zero sequence of A_{α}^{p} ' which is not 'a zero sequence of \mathcal{B} '. Indeed, it is known (G-Nowak-Waniurski-2000) that if $\{z_k\}$ is the sequence of zeros of a function $f \in \mathcal{B}$ with $f(0) \neq 0$ then

$$\prod_{k=1}^{n} \frac{1}{|z_k|} = O\left((\log n)^{1/2}\right).(*)$$

While (Horowitz-1974) proved that for any given $\varepsilon > 0$, there exist $g \in A^p_{\alpha}$ with $g(0) \neq 0$ whose sequence of zeros $\{z_k\}$ satisfies

$$\prod_{k=1}^{n} \frac{1}{|z_k|} \neq O\left(n^{(1+\alpha)/(p(1+\varepsilon))}\right).(**)$$

Theorem (D-G)

Suppose that $0 , <math>\alpha > -1$ and let φ be an entire function. If $S_{\varphi}(A^{p}_{\alpha}) \subset \mathcal{B}$ then φ is constant.

The ingredient in our proof is that there exists 'a zero sequence of A^{p}_{α} ' which is not 'a zero sequence of \mathcal{B} '.

Indeed, it is known (G-Nowak-Waniurski-2000) that if $\{z_k\}$ is the sequence of zeros of a function $f \in \mathcal{B}$ with $f(0) \neq 0$ then

$$\prod_{k=1}^{n} \frac{1}{|z_k|} = O\left((\log n)^{1/2}\right).(*)$$

While (Horowitz-1974) proved that for any given $\varepsilon > 0$, there exist $g \in A^p_{\alpha}$ with $g(0) \neq 0$ whose sequence of zeros $\{z_k\}$ satisfies

$$\prod_{k=1}^{n} \frac{1}{|z_k|} \neq O\left(n^{(1+\alpha)/(p(1+\varepsilon))}\right).(**)$$

Theorem (D-G)

Suppose that $0 , <math>\alpha > -1$ and let φ be an entire function. If $S_{\varphi}(A^{p}_{\alpha}) \subset \mathcal{B}$ then φ is constant.

The ingredient in our proof is that there exists 'a zero sequence of A_{α}^{p} ' which is not 'a zero sequence of \mathcal{B} '. Indeed, it is known (G-Nowak-Waniurski-2000) that if $\{z_k\}$ is the sequence of zeros of a function $f \in \mathcal{B}$ with $f(0) \neq 0$ then

$$\prod_{k=1}^{n} \frac{1}{|z_k|} = O\left((\log n)^{1/2}\right).(*)$$

While (Horowitz-1974) proved that for any given $\varepsilon > 0$, there exist $g \in A^p_{\alpha}$ with $g(0) \neq 0$ whose sequence of zeros $\{z_k\}$ satisfies

$$\prod_{k=1}^{n} \frac{1}{|z_k|} \neq O\left(n^{(1+\alpha)/(p(1+\varepsilon))}\right).(**)$$

Suppose φ is not constant and $S_{\varphi}(A^{p}_{\alpha}) \subset \mathcal{B}$. Take $g \in A^{p}_{\alpha}, g \neq 0$ whose sequence of zeros satisfies (**) for some $\epsilon > 0$. We have that $S_{\varphi}(g) = \varphi \circ g \in \mathcal{B}$ and $\varphi \circ g$ is not constant. Set $F = S_{\varphi}(g) - \varphi(0)$. We have that

$$F = S_{\varphi}(g) - \varphi(0) = \varphi \circ g - \varphi(0) \in \mathcal{B}, \text{ and } F \not\equiv 0.$$

Now, all the zeros of *g* are zeros of *F*. In other words, the sequence $\{z_k\}$ is contained in the sequence $\{\xi_k\}$ of zeros of *F*. Since $\{z_k\}$ satisfies (**), $\{\xi_k\}$ does not satisfies (*). This contradicts the fact that $F \in \mathcal{B}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let *X* and *Y* be two spaces of analytic functions in \mathbb{D} satisfying the following conditions:

- (i) X contains the constants.
- (ii) There exists a function *f* ∈ *X* with *f*(0) ≠ 0 whose sequence of zeros {*z_k*} is not a subsequence of a sequence of zeros of *Y*.

Let φ be an entire function. Then φ acts from X into Y by superposition if and only if φ is constant.

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$\mathcal{D}^{p}_{p-1} \subset H^{p} \subset A^{2p}, \quad 0 $H^{p} \subset \mathcal{D}^{p}_{p-1} \subset A^{2p}, \quad 2 \le p < \infty.$$$

同ト・モン・モン

$$\mathcal{D}^{p}_{p-1} \subset H^{p} \subset A^{2p}, \quad 0 $H^{p} \subset \mathcal{D}^{p}_{p-1} \subset A^{2p}, \quad 2 \leq p < \infty.$$$

(雪) (ヨ) (ヨ)

$$\mathcal{D}^p_{p-1} \subset H^p \subset A^{2p}, \quad 0 $H^p \subset \mathcal{D}^p_{p-1} \subset A^{2p}, \quad 2 \le p < \infty.$$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$\mathcal{D}^p_{p-1} \subset H^p \subset A^{2p}, \quad 0 $H^p \subset \mathcal{D}^p_{p-1} \subset A^{2p}, \quad 2 \le p < \infty.$$$

< 回 > < 回 > < 回 > .

- For $0 , the Carleson measures for <math>H^p$ and those for \mathcal{D}^p_{p-1} are the same.
- The univalent functions in H^p and \mathcal{D}^p_{p-1} (0) are the same (BGP2004).
- A number of operators are bounded on H^p iff and only if they are bounded for D^p_{p-1}.
- In some cases, it is useful to go through D^p_{p-1} when one wants to study the action of an operator on H^p.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

- For $0 , the Carleson measures for <math>H^p$ and those for \mathcal{D}^p_{p-1} are the same.
- The univalent functions in H^p and \mathcal{D}^p_{p-1} (0 < $p < \infty$) are the same (BGP2004).
- A number of operators are bounded on H^p iff and only if they are bounded for D^p_{p-1}.
- In some cases, it is useful to go through D^p_{p-1} when one wants to study the action of an operator on H^p.

▲御♪ ▲ヨ♪ ▲ヨ♪ 三日

- For $0 , the Carleson measures for <math>H^p$ and those for \mathcal{D}^p_{p-1} are the same.
- The univalent functions in H^p and D^p_{p−1} (0 the same (BGP2004).
- A number of operators are bounded on H^p iff and only if they are bounded for D^p_{p-1}.
- In some cases, it is useful to go through D^p_{p-1} when one wants to study the action of an operator on H^p.

<ロ> <問> <問> < 回> < 回> < 回> < 回> < 回

- For $0 , the Carleson measures for <math>H^p$ and those for \mathcal{D}^p_{p-1} are the same.
- The univalent functions in H^p and D^p_{p−1} (0
- A number of operators are bounded on H^p iff and only if they are bounded for D^p_{p-1}.
- In some cases, it is useful to go through D^p_{p-1} when one wants to study the action of an operator on H^p.

ヘロン 人間 とくほ とくほ とう

- $H^{\infty} \not\subset \mathcal{D}_{p-1}^{p}$, if 0 . $There are Blaschke products not belonging to any of the <math>\mathcal{D}_{p-1}^{p}$ -spaces, 0 .
- For p > 2, there are functions in \mathcal{D}_{p-1}^{p} without radial limits.
- There is no inclusion relation between \mathcal{D}_{p-1}^{p} and \mathcal{D}_{q-1}^{q} , $p \neq q$.
- The zero sequence of a D^p_{p-1}-function, p > 2, may not satisfy the Blaschke condition.
- Even though it was conjectured that that the Carleson measures for \mathcal{D}_{p-1}^{p} (p > 2) were the same, this is not true (GP2006).

・ 同 ト ・ ヨ ト ・ ヨ ト

• $H^{\infty} \not\subset \mathcal{D}_{p-1}^{p}$, if 0 . $There are Blaschke products not belonging to any of the <math>\mathcal{D}_{p-1}^{p}$ -spaces, 0 .

- For p > 2, there are functions in \mathcal{D}_{p-1}^{p} without radial limits.
- There is no inclusion relation between \mathcal{D}_{p-1}^{p} and \mathcal{D}_{q-1}^{q} , $p \neq q$.
- The zero sequence of a D^p_{p-1}-function, p > 2, may not satisfy the Blaschke condition.
- Even though it was conjectured that that the Carleson measures for \mathcal{D}_{p-1}^{p} (p > 2) were the same, this is not true (GP2006).

・ロト ・ 理 ト ・ ヨ ト ・

• $H^{\infty} \not\subset \mathcal{D}_{p-1}^{p}$, if 0 . $There are Blaschke products not belonging to any of the <math>\mathcal{D}_{p-1}^{p}$ -spaces, 0 .

• For p > 2, there are functions in \mathcal{D}_{p-1}^{p} without radial limits.

- There is no inclusion relation between \mathcal{D}_{p-1}^{p} and \mathcal{D}_{q-1}^{q} , $p \neq q$.
- The zero sequence of a D^p_{p-1}-function, p > 2, may not satisfy the Blaschke condition.
- Even though it was conjectured that that the Carleson measures for \mathcal{D}_{p-1}^{p} (p > 2) were the same, this is not true (GP2006).

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

• $H^{\infty} \not\subset \mathcal{D}_{p-1}^{p}$, if 0 . $There are Blaschke products not belonging to any of the <math>\mathcal{D}_{p-1}^{p}$ -spaces, 0 .

• For p > 2, there are functions in \mathcal{D}_{p-1}^{p} without radial limits.

- There is no inclusion relation between \mathcal{D}_{p-1}^{p} and \mathcal{D}_{q-1}^{q} , $p \neq q$.
- The zero sequence of a D^p_{p-1}-function, p > 2, may not satisfy the Blaschke condition.
- Even though it was conjectured that that the Carleson measures for \mathcal{D}_{p-1}^{p} (p > 2) were the same, this is not true (GP2006).

イロト 不得 とくほ とくほ とうほ

• $H^{\infty} \not\subset \mathcal{D}_{p-1}^{p}$, if 0 . $There are Blaschke products not belonging to any of the <math>\mathcal{D}_{p-1}^{p}$ -spaces, 0 .

- For p > 2, there are functions in \mathcal{D}_{p-1}^{p} without radial limits.
- There is no inclusion relation between \mathcal{D}_{p-1}^{p} and \mathcal{D}_{q-1}^{q} , $p \neq q$.
- The zero sequence of a D^p_{p-1}-function, p > 2, may not satisfy the Blaschke condition.
- Even though it was conjectured that that the Carleson measures for \mathcal{D}_{p-1}^{p} (p > 2) were the same, this is not true (GP2006).

イロン 不良 とくほう 不良 とうほ

• $H^{\infty} \not\subset \mathcal{D}_{p-1}^{p}$, if 0 . $There are Blaschke products not belonging to any of the <math>\mathcal{D}_{p-1}^{p}$ -spaces, 0 .

- For p > 2, there are functions in \mathcal{D}_{p-1}^{p} without radial limits.
- There is no inclusion relation between \mathcal{D}_{p-1}^{p} and \mathcal{D}_{q-1}^{q} , $p \neq q$.
- The zero sequence of a D^p_{p-1}-function, p > 2, may not satisfy the Blaschke condition.
- Even though it was conjectured that that the Carleson measures for \mathcal{D}_{p-1}^{p} (p > 2) were the same, this is not true (GP2006).

ヘロン ヘアン ヘビン ヘビン

Objective

Studying similarities and differences between Hardy spaces and \mathcal{D}_{p-1}^{p} -spaces regarding superposition operators.

Let us consider superposition operators between the Hardy spaces and the spaces *BMOA* and the Bloch space \mathcal{B} , and compare them with those between the \mathcal{D}_{p-1}^{p} -spaces and *BMOA* or \mathcal{B} .

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Objective

Studying similarities and differences between Hardy spaces and \mathcal{D}_{p-1}^{p} -spaces regarding superposition operators.

Let us consider superposition operators between the Hardy spaces and the spaces *BMOA* and the Bloch space \mathcal{B} , and compare them with those between the \mathcal{D}_{p-1}^{p} -spaces and *BMOA* or \mathcal{B} .

(日本) (日本) (日本) 日

Objective

Studying similarities and differences between Hardy spaces and \mathcal{D}_{p-1}^{p} -spaces regarding superposition operators.

Let us consider superposition operators between the Hardy spaces and the spaces *BMOA* and the Bloch space \mathcal{B} , and compare them with those between the \mathcal{D}_{p-1}^{p} -spaces and *BMOA* or \mathcal{B} .

(日本) (日本) (日本) 日

Superposition operators between *BMOA* spaces and Hardy spaces

In a work in collaboration with M. A. Márquez we proved the following.

Theorem

Let φ be an entire function. Then

(a) For $0 , <math>S_{\varphi}(\mathcal{B}) \subset H^p$ if and only if φ is constant.

(b) For 0 φ</sub>(BMOA) ⊂ H^p if and only if φ is of order less than one, or of order one and type zero.

(a) can be proved using the idea on the zero sequences.(b) is more difficult. I am not going to give the details. We use the John-Niremberg theorem.

・通 と く ヨ と く

Superposition operators between *BMOA* spaces and Hardy spaces

In a work in collaboration with M. A. Márquez we proved the following.

Theorem

Let φ be an entire function. Then

(a) For $0 , <math>S_{\varphi}(\mathcal{B}) \subset H^p$ if and only if φ is constant.

(b) For 0 φ</sub>(BMOA) ⊂ H^p if and only if φ is of order less than one, or of order one and type zero.

(a) can be proved using the idea on the zero sequences.(b) is more difficult. I am not going to give the details. We use the John-Niremberg theorem.

・良 ・ ・ ヨ ・ ・
In a work in collaboration with M. A. Márquez we proved the following.

Theorem

Let φ be an entire function. Then

(a) For 0 φ</sub>(B) ⊂ H^p if and only if φ is constant.
(b) For 0 φ</sub>(BMOA) ⊂ H^p if and only if φ is of order less than one, or of order one and type zero.

(a) can be proved using the idea on the zero sequences.(b) is more difficult. I am not going to give the details. We use the John-Niremberg theorem.

< 回 > < 回 > <

In a work in collaboration with M. A. Márquez we proved the following.

Theorem

Let φ be an entire function. Then

(a) For $0 , <math>S_{\varphi}(\mathcal{B}) \subset H^p$ if and only if φ is constant.

(b) For 0 φ</sub>(BMOA) ⊂ H^p if and only if φ is of order less than one, or of order one and type zero.

(a) can be proved using the idea on the zero sequences.(b) is more difficult. I am not going to give the details. We use the John-Niremberg theorem.

・ 同・ ・ ヨ・ ・

In a work in collaboration with M. A. Márquez we proved the following.

Theorem

Let φ be an entire function. Then

(a) For $0 , <math>S_{\varphi}(\mathcal{B}) \subset H^p$ if and only if φ is constant.

(b) For 0 φ</sub>(BMOA) ⊂ H^p if and only if φ is of order less than one, or of order one and type zero.

(a) can be proved using the idea on the zero sequences.(b) is more difficult. I am not going to give the details. We use the John-Niremberg theorem.

▲ □ ▶ ▲ 三 ▶ ▲ 三

In a work in collaboration with M. A. Márquez we proved the following.

Theorem

Let φ be an entire function. Then

(a) For $0 , <math>S_{\varphi}(\mathcal{B}) \subset H^p$ if and only if φ is constant.

(b) For 0 φ</sub>(BMOA) ⊂ H^p if and only if φ is of order less than one, or of order one and type zero.

(a) can be proved using the idea on the zero sequences.(b) is more difficult. I am not going to give the details. We use the John-Niremberg theorem.

・ 同 ト ・ 三 ト ・

In a work in collaboration with M. A. Márquez we proved the following.

Theorem

Let φ be an entire function. Then

(a) For $0 , <math>S_{\varphi}(\mathcal{B}) \subset H^p$ if and only if φ is constant.

(b) For 0 φ</sub>(BMOA) ⊂ H^p if and only if φ is of order less than one, or of order one and type zero.

(a) can be proved using the idea on the zero sequences.(b) is more difficult. I am not going to give the details. We use the John-Niremberg theorem.

・ 同・ ・ ヨ・ ・

We know that for any *p*

 $S_{\varphi}(\mathcal{B}) \subset H^p \Leftrightarrow \varphi$ is constant.

Since $\mathcal{D}_{p-1}^{p} \subset H^{p}$ for $p \leq 2$, this implies:

If $0 , then <math>S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$ if and only if φ is constant.

What about the case 2 ?

▲□ > ▲ □ > ▲ □ > …

We know that for any *p*

 $S_{\varphi}(\mathcal{B}) \subset H^{p} \Leftrightarrow \varphi$ is constant.

Since $\mathcal{D}_{p-1}^{p} \subset H^{p}$ for $p \leq 2$, this implies:

If $0 , then <math>S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$ if and only if φ is constant.

What about the case 2 ?

(四) (日) (日) 日

We know that for any *p*

 $S_{\varphi}(\mathcal{B}) \subset H^{p} \Leftrightarrow \varphi$ is constant.

Since $\mathcal{D}_{p-1}^{p} \subset H^{p}$ for $p \leq 2$, this implies:

If $0 , then <math>S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{\rho}$ if and only if φ is constant.

What about the case 2 ?

< 回 > < 回 > < 回 > … 回

We know that for any *p*

 $S_{\varphi}(\mathcal{B}) \subset H^{p} \Leftrightarrow \varphi$ is constant.

Since $\mathcal{D}_{p-1}^{p} \subset H^{p}$ for $p \leq 2$, this implies:

If $0 , then <math>S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$ if and only if φ is constant.

What about the case 2 ?

< 回 > < 回 > < 回 > … 回

We know that for any *p*

 $S_{\varphi}(\mathcal{B}) \subset H^{p} \Leftrightarrow \varphi$ is constant.

Since $\mathcal{D}_{p-1}^{p} \subset H^{p}$ for $p \leq 2$, this implies:

If $0 , then <math>S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$ if and only if φ is constant.

What about the case 2 < ho < ∞ ?

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

We know that for any *p*

 $S_{\varphi}(\mathcal{B}) \subset H^{p} \Leftrightarrow \varphi$ is constant.

Since $\mathcal{D}_{p-1}^{p} \subset H^{p}$ for $p \leq 2$, this implies:

If $0 , then <math>S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$ if and only if φ is constant.

What about the case 2 ?

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

There are function in \mathcal{D}_{p-1}^{p} (p > 2) whose sequence of zeros do not satisfy the Blaschke condition. So...

More precise results about the zero sequences of Bloch functions and \mathcal{D}_{n-1}^{ρ} -functions

Suppose $f \in \mathcal{B}$ with $f(0) \neq 0$ and let $\{a_n\}$ be the (ordered) sequence of the zeros of f. Then

$$\prod_{n=1}^{N} \frac{1}{|a_n|} = O\left((\log N)^{1/2}\right), \text{ as } N \to \infty.$$

This is sharp: There exists $f \in \mathcal{B}$ for which

$$\prod_{n=1}^{N} \frac{1}{|a_n|} \neq o\left((\log N)^{1/2}\right).$$

Daniel Girela Superposition operators ...

There are function in \mathcal{D}_{p-1}^{p} (p > 2) whose sequence of zeros do not satisfy the Blaschke condition. So...

More precise results about the zero sequences of Bloch functions and $\mathcal{D}^{\rho}_{\rho-1}$ -functions

Suppose $f \in \mathcal{B}$ with $f(0) \neq 0$ and let $\{a_n\}$ be the (ordered) sequence of the zeros of f. Then

$$\prod_{n=1}^{N} \frac{1}{|a_n|} = O\left((\log N)^{1/2}\right), \text{ as } N \to \infty.$$

This is sharp: There exists $f \in \mathcal{B}$ for which

$$\prod_{n=1}^{N} \frac{1}{|a_n|} \neq o\left((\log N)^{1/2}\right).$$

Daniel Girela Superposition operators ...

There are function in \mathcal{D}_{p-1}^{p} (p > 2) whose sequence of zeros do not satisfy the Blaschke condition. So...

More precise results about the zero sequences of Bloch functions and \mathcal{D}_{p-1}^{p} -functions

Suppose $f \in \mathcal{B}$ with $f(0) \neq 0$ and let $\{a_n\}$ be the (ordered) sequence of the zeros of f. Then

$$\prod_{n=1}^N \frac{1}{|a_n|} = O\left((\log N)^{1/2}\right), \quad \text{as } N \to \infty.$$

This is sharp: There exists $f \in \mathcal{B}$ for which

$$\prod_{n=1}^{N} \frac{1}{|a_n|} \neq o\left((\log N)^{1/2}\right).$$

Daniel Girela Super

Superposition operators ...

There are function in \mathcal{D}_{p-1}^{p} (p > 2) whose sequence of zeros do not satisfy the Blaschke condition. So...

More precise results about the zero sequences of Bloch functions and \mathcal{D}_{p-1}^{p} -functions

Suppose $f \in \mathcal{B}$ with $f(0) \neq 0$ and let $\{a_n\}$ be the (ordered) sequence of the zeros of f. Then

$$\prod_{n=1}^N \frac{1}{|a_n|} = O\left((\log N)^{1/2}\right), \quad \text{as } N \to \infty.$$

This is sharp: There exists $f \in \mathcal{B}$ for which

$$\prod_{n=1}^{N} \frac{1}{|a_n|} \neq o\left((\log N)^{1/2}\right).$$

Daniel Girela Superposition operators ...

There are function in \mathcal{D}_{p-1}^{p} (p > 2) whose sequence of zeros do not satisfy the Blaschke condition. So...

More precise results about the zero sequences of Bloch functions and \mathcal{D}_{p-1}^{p} -functions

Suppose $f \in \mathcal{B}$ with $f(0) \neq 0$ and let $\{a_n\}$ be the (ordered) sequence of the zeros of f. Then

$$\prod_{n=1}^{N} \frac{1}{|a_n|} = O\left((\log N)^{1/2}\right), \text{ as } N \to \infty.$$

This is sharp: There exists $f \in \mathcal{B}$ for which

$$\prod_{n=1}^{N} \frac{1}{|a_n|} \neq o\left((\log N)^{1/2}\right).$$

Daniel Girela Superposition operators ...

There are function in \mathcal{D}_{p-1}^{p} (p > 2) whose sequence of zeros do not satisfy the Blaschke condition. So...

More precise results about the zero sequences of Bloch functions and \mathcal{D}_{p-1}^{p} -functions

Suppose $f \in \mathcal{B}$ with $f(0) \neq 0$ and let $\{a_n\}$ be the (ordered) sequence of the zeros of f. Then

$$\prod_{n=1}^{N} \frac{1}{|a_n|} = O\left((\log N)^{1/2}\right), \text{ as } N \to \infty.$$

This is sharp: There exists $f \in \mathcal{B}$ for which

$$\prod_{n=1}^N \frac{1}{|a_n|} \neq o\left((\log N)^{1/2}\right).$$

For
$$\mathcal{D}_{p-1}^{p}$$
-functions we have the following result.

Suppose $2 and <math>f \in \mathcal{B}$ with $f(0) \neq 0$. Let $\{a_n\}$ be the (ordered) sequence of the zeros of f. Then

$$\prod_{n=1}^{N} \frac{1}{|a_n|} = O\left((\log N)^{\frac{1}{2} - \frac{1}{p}} \right), \text{ as } N \to \infty.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

For \mathcal{D}_{p-1}^{p} -functions we have the following result.

Suppose $2 and <math>f \in \mathcal{B}$ with $f(0) \neq 0$. Let $\{a_n\}$ be the (ordered) sequence of the zeros of f. Then

$$\prod_{n=1}^{N} \frac{1}{|a_n|} = O\left((\log N)^{\frac{1}{2} - \frac{1}{p}} \right), \text{ as } N \to \infty.$$

Daniel Girela Superposition operators ...

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

For \mathcal{D}_{p-1}^{p} -functions we have the following result.

Suppose $2 and <math>f \in \mathcal{B}$ with $f(0) \neq 0$. Let $\{a_n\}$ be the (ordered) sequence of the zeros of f. Then

$$\prod_{n=1}^{N} \frac{1}{|a_n|} = O\left((\log N)^{\frac{1}{2} - \frac{1}{p}} \right), \quad \text{as } N \to \infty.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

For \mathcal{D}_{p-1}^{p} -functions we have the following result.

Suppose $2 and <math>f \in \mathcal{B}$ with $f(0) \neq 0$. Let $\{a_n\}$ be the (ordered) sequence of the zeros of f. Then

$$\prod_{n=1}^{N} \frac{1}{|a_n|} = O\left((\log N)^{\frac{1}{2} - \frac{1}{p}} \right), \text{ as } N \to \infty.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$$\prod_{n=1}^{N} \frac{1}{|a_n|} \neq o\left((\log N)^{1/2}\right).$$

Set $g(z) = \varphi \circ f(z) - \varphi(0)$. If $g \equiv 0$ then φ is constant. If $g \neq 0$ then $g \in \mathcal{D}_{p-1}^{p}$ and, hence, its sequence of zeros $\{z_n\}$ satisfies

$$\prod_{n=1}^{N} \frac{1}{|z_n|} = O\left((\log N)^{\frac{1}{2} - \frac{1}{p}}\right) = o\left((\log N)^{1/2}\right).$$

But the $a'_n s$ are zeros of g... contradiction.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

$$\prod_{n=1}^{N} \frac{1}{|a_n|} \neq o\left((\log N)^{1/2}\right).$$

Set $g(z) = \varphi \circ f(z) - \varphi(0)$. If $g \equiv 0$ then φ is constant. If $g \neq 0$ then $g \in \mathcal{D}_{p-1}^{p}$ and, hence, its sequence of zeros $\{z_n\}$ satisfies

$$\prod_{n=1}^{N} \frac{1}{|z_n|} = O\left((\log N)^{\frac{1}{2} - \frac{1}{p}}\right) = o\left((\log N)^{1/2}\right).$$

But the $a'_n s$ are zeros of g... contradiction.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

1

$$\prod_{n=1}^{N} \frac{1}{|a_n|} \neq o\left((\log N)^{1/2}\right).$$

Set $g(z) = \varphi \circ f(z) - \varphi(0)$.

If $g \equiv 0$ then φ is constant. If $g \neq 0$ then $g \in \mathcal{D}_{p-1}^{p}$ and, hence, its sequence of zeros $\{z_n\}$ satisfies

$$\prod_{n=1}^{N} \frac{1}{|z_n|} = O\left((\log N)^{\frac{1}{2} - \frac{1}{p}}\right) = o\left((\log N)^{1/2}\right).$$

But the $a'_n s$ are zeros of g... contradiction.

(本部) (本語) (本語) (二語)

$$\prod_{n=1}^{N} \frac{1}{|a_n|} \neq o\left((\log N)^{1/2}\right).$$

Set $g(z) = \varphi \circ f(z) - \varphi(0)$. If $g \equiv 0$ then φ is constant.

If $g \neq 0$ then $g \in \mathcal{D}_{p-1}^{p}$ and, hence, its sequence of zeros $\{z_n\}$ satisfies

$$\prod_{n=1}^{N} \frac{1}{|Z_n|} = O\left((\log N)^{\frac{1}{2} - \frac{1}{p}} \right) = o\left((\log N)^{1/2} \right).$$

But the $a'_n s$ are zeros of g... contradiction.

▲御▶ ▲理▶ ▲理▶ 二臣

$$\prod_{n=1}^{N} \frac{1}{|a_n|} \neq \operatorname{o}\left((\log N)^{1/2}\right).$$

Set $g(z) = \varphi \circ f(z) - \varphi(0)$. If $g \equiv 0$ then φ is constant. If $g \neq 0$ then $g \in \mathcal{D}_{p-1}^{p}$ and, hence, its sequence of zeros $\{z_n\}$ satisfies

$$\prod_{n=1}^{N} \frac{1}{|z_n|} = O\left((\log N)^{\frac{1}{2} - \frac{1}{p}} \right) = o\left((\log N)^{1/2} \right).$$

But the $a'_n s$ are zeros of g... contradiction.

・同・・モー・ モー・ 王

We have:

Theorem

Suppose $0 and let <math>\varphi$ be an entire function. Then the following are equivalent:

•
$$S_{\varphi}(\mathcal{B}) \subset H^{p}$$
.

•
$$S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^p$$

• φ is constant.

ヘロト 人間 とくほとく ほとう

3

We have:

Theorem

Suppose $0 and let <math>\varphi$ be an entire function. Then the following are equivalent:

•
$$S_{arphi}(\mathcal{B})\subset H^p.$$

•
$$S_{arphi}(\mathcal{B}) \subset \mathcal{D}^p_{p-1}$$

• φ is constant.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Recall: $S_{\varphi}(BMOA) \subset H^{\rho}$ if and only if φ is of order less than one, or of order one and type zero. Also true: $S_{\varphi}(BMOA) \subset A^{\rho}$ if and φ is of order less than one, or of order one and type zero.

Using these two results and the fact $H^p \subset \mathcal{D}^p_{p-1} \subset A^{2p}$, it follows easily:

Theorem

Suppose $2 \le p < \infty$ and let φ be an entire function. Then the following are equivalent:

- $S_{\varphi}(BMOA) \subset H^{p}$.
- $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$.

• φ is of order less than one, or of order one and type zero.

ヘロト 人間 ト ヘヨト ヘヨト

Recall: $S_{\varphi}(BMOA) \subset H^{\rho}$ if and only if φ is of order less than one, or of order one and type zero. Also true: $S_{\varphi}(BMOA) \subset A^{\rho}$ if and φ is of order less than one, or of order one and type zero.

Using these two results and the fact $H^p \subset \mathcal{D}_{p-1}^p \subset A^{2p}$, it follows easily:

Theorem

Suppose $2 \le p < \infty$ and let φ be an entire function. Then the following are equivalent:

- $S_{\varphi}(BMOA) \subset H^{p}$.
- $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$.

• φ is of order less than one, or of order one and type zero.

ヘロト ヘアト ヘビト ヘビト

Recall: $S_{\varphi}(BMOA) \subset H^{p}$ if and only if φ is of order less than one, or of order one and type zero.

Also true: $S_{\varphi}(BMOA) \subset A^{
ho}$ if and φ is of order less than one, or of order one and type zero.

Using these two results and the fact $H^p \subset \mathcal{D}_{p-1}^p \subset A^{2p}$, it follows easily:

Theorem

Suppose $2 \le p < \infty$ and let φ be an entire function. Then the following are equivalent:

- $S_{\varphi}(BMOA) \subset H^p$.
- $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$.

• φ is of order less than one, or of order one and type zero.

ヘロト 人間 ト ヘヨト ヘヨト

Recall: $S_{\varphi}(BMOA) \subset H^{p}$ if and only if φ is of order less than one, or of order one and type zero.

Also true: $S_{\varphi}(BMOA) \subset A^{p}$ if and φ is of order less than one, or of order one and type zero.

Using these two results and the fact $H^p \subset \mathcal{D}^p_{p-1} \subset A^{2p}$, it follows easily:

Theorem

Suppose $2 \le p < \infty$ and let φ be an entire function. Then the following are equivalent:

- $S_{\varphi}(BMOA) \subset H^{p}$.
- $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$.

• φ is of order less than one, or of order one and type zero.

ヘロト 人間 ト ヘヨト ヘヨト

Recall: $S_{\varphi}(BMOA) \subset H^{\rho}$ if and only if φ is of order less than one, or of order one and type zero. Also true: $S_{\varphi}(BMOA) \subset A^{\rho}$ if and φ is of order less than one, or of order one and type zero.

Using these two results and the fact $H^p \subset \mathcal{D}^p_{p-1} \subset A^{2p}$, it follows easily:

Theorem

Suppose $2 \le p < \infty$ and let φ be an entire function. Then the following are equivalent:

- $S_{\varphi}(BMOA) \subset H^{p}$.
- $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^p$.

• φ is of order less than one, or of order one and type zero.

ヘロト 人間 ト ヘヨト ヘヨト

Recall: $S_{\varphi}(BMOA) \subset H^{\rho}$ if and only if φ is of order less than one, or of order one and type zero. Also true: $S_{\varphi}(BMOA) \subset A^{\rho}$ if and φ is of order less than one, or of order one and type zero.

Using these two results and the fact $H^p \subset \mathcal{D}_{p-1}^p \subset A^{2p}$, it follows easily:

Theorem

Suppose $2 \le p < \infty$ and let φ be an entire function. Then the following are equivalent:

- $S_{\varphi}(BMOA) \subset H^{p}$.
- $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^p$.

• φ is of order less than one, or of order one and type zero.

ヘロト 人間 ト ヘヨト ヘヨト

э

Recall: $S_{\varphi}(BMOA) \subset H^{\rho}$ if and only if φ is of order less than one, or of order one and type zero. Also true: $S_{\varphi}(BMOA) \subset A^{\rho}$ if and φ is of order less than one, or of order one and type zero.

Using these two results and the fact $H^p \subset \mathcal{D}_{p-1}^p \subset A^{2p}$, it follows easily:

Theorem

Suppose $2 \le p < \infty$ and let φ be an entire function. Then the following are equivalent:

- $S_{\varphi}(BMOA) \subset H^p$.
- $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$.

• φ is of order less than one, or of order one and type zero.

ヘロン 人間 とくほ とくほ とう

Superposition operators from *BMOA* into \mathcal{D}_{p-1}^{p} , 0

For these values of p the φ 's for which $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$ do not coincide with those for which $S_{\varphi}(BMOA) \subset H^{p}$. We have:

Theorem

Suppose that $0 and let <math>\varphi$ be an entire function. Then

 $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p} \Leftrightarrow \varphi \text{ constant.}$

・ 同 ト ・ ヨ ト ・ ヨ ト
For these values of *p* the φ 's for which $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$ do not coincide with those for which $S_{\varphi}(BMOA) \subset H^{p}$.

We have:

Theorem

Suppose that $0 and let <math>\varphi$ be an entire function. Then

 $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p} \Leftrightarrow \varphi \text{ constant.}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

For these values of p the φ 's for which $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$ do not coincide with those for which $S_{\varphi}(BMOA) \subset H^{p}$. We have:

Theorem

Suppose that $0 and let <math>\varphi$ be an entire function. Then

 $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p} \Leftrightarrow \varphi \text{ constant.}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

For these values of *p* the φ 's for which $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$ do not coincide with those for which $S_{\varphi}(BMOA) \subset H^{p}$. We have:

Theorem

Suppose that $0 and let <math>\varphi$ be an entire function. Then

 $S_arphi(\mathit{BMOA}) \subset \mathcal{D}^p_{p-1} \ \Leftrightarrow \ arphi$ constant.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

For these values of *p* the φ 's for which $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$ do not coincide with those for which $S_{\varphi}(BMOA) \subset H^{p}$. We have:

Theorem

Suppose that $0 and let <math>\varphi$ be an entire function. Then

$$S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p} \Leftrightarrow \varphi$$
 constant.

ヘロン 人間 とくほ とくほ とう

Suppose $0 , <math>\varphi$ is non-constant, and $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$. Take $f \in H^{\infty} \subset BMOA$ such that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p dr = \infty, \quad \text{for a. e. } \theta.$$

 $\varphi' \not\equiv 0$ and then

 $\varphi' \circ f \in H^{\infty}$ and $\varphi' \circ f \not\equiv 0$.

It follows that $\varphi' \circ f$ has a non-zero radial limit almost everywhwere.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Suppose $0 , <math>\varphi$ is non-constant, and $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$. Take $f \in H^{\infty} \subset BMOA$ such that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p dr = \infty, \quad \text{for a. e. } \theta.$$

 $\varphi' \not\equiv \mathbf{0}$ and then

 $\varphi' \circ f \in H^{\infty}$ and $\varphi' \circ f \not\equiv 0$.

It follows that $\varphi' \circ f$ has a non-zero radial limit almost everywhwere.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Suppose $0 , <math>\varphi$ is non-constant, and $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$. Take $f \in H^{\infty} \subset BMOA$ such that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \, dr = \infty, \quad \text{for a. e. } \theta.$$

 $\varphi' \not\equiv \mathbf{0}$ and then

$$\varphi' \circ f \in H^{\infty}$$
 and $\varphi' \circ f \not\equiv 0$.

It follows that $\varphi' \circ f$ has a non-zero radial limit almost everywhwere.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Suppose $0 , <math>\varphi$ is non-constant, and $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$. Take $f \in H^{\infty} \subset BMOA$ such that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \, dr = \infty, \quad \text{for a. e. } \theta.$$

 $arphi' \not\equiv \mathbf{0} \; \mathrm{and} \; \mathrm{then}$

$$\varphi' \circ f \in H^{\infty}$$
 and $\varphi' \circ f \not\equiv 0$.

It follows that $\varphi' \circ f$ has a non-zero radial limit almost everywhwere.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Suppose $0 , <math>\varphi$ is non-constant, and $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$. Take $f \in H^{\infty} \subset BMOA$ such that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p dr = \infty, \quad \text{for a. e. } \theta.$$

 $arphi' \not\equiv \mathbf{0} \; \mathrm{and} \; \mathrm{then}$

 $\varphi' \circ f \in H^{\infty}$ and $\varphi' \circ f \not\equiv 0$.

It follows that $\varphi' \circ f$ has a non-zero radial limit almost everywhwere.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Suppose $0 , <math>\varphi$ is non-constant, and $S_{\varphi}(BMOA) \subset \mathcal{D}_{p-1}^{p}$. Take $f \in H^{\infty} \subset BMOA$ such that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p dr = \infty, \quad \text{for a. e. } \theta.$$

 $arphi' \not\equiv \mathbf{0} \; \mathrm{and} \; \mathrm{then}$

$$\varphi' \circ f \in H^{\infty}$$
 and $\varphi' \circ f \not\equiv 0$.

It follows that $\varphi' \circ f$ has a non-zero radial limit almost everywhwere.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

 $S_{\varphi}(f) \in \mathcal{D}^{p}_{p-1}$, that is,

$$\int_{\mathbb{D}} (1-|z|)^{p-1} |f'(z)|^p |\varphi'(f(z))|^p \, dA(z) < \infty.$$

Equivalently,

$$\int_0^{2\pi} \int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \left| \varphi'\left(f(re^{i\theta})\right) \right|^p \, dr \, d\theta < \infty.$$

This implies that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \left| \varphi'\left(f(re^{i\theta})\right) \right|^p \, dr < \infty, \quad \text{for a. e. } \theta.$$

But, since $\varphi' \circ f$ has a non-zero radial limit almost everywhere, this implies that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i heta})|^p \, dr < \infty, \quad ext{for a. e. } heta.$$

Contradiction.

ヘロン 人間 とくほど くほとう

3

$$\mathcal{S}_{arphi}(f)\in\mathcal{D}^{
ho}_{
ho=-1}$$
, that is,

$$\int_{\mathbb{D}} (1-|z|)^{p-1} |f'(z)|^p |\varphi'(f(z))|^p \, dA(z) < \infty.$$

$$\int_0^{2\pi} \int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \left| \varphi'\left(f(re^{i\theta})\right) \right|^p \, dr \, d\theta < \infty.$$

This implies that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \left| \varphi'\left(f(re^{i\theta})\right) \right|^p \, dr < \infty, \quad \text{for a. e. } \theta.$$

But, since $\varphi' \circ f$ has a non-zero radial limit almost everywhere, this implies that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i heta})|^p \, dr < \infty, \quad ext{for a. e. } heta.$$

Contradiction.

ヘロア 人間 アメヨア 人口 ア

$$S_arphi(f)\in \mathcal{D}^p_{p-1},$$
 that is, $\int_\mathbb{D}(1-|z|)^{p-1}|f'(z)|^p|arphi'(f(z))|^p\,dA(z)<\infty.$

$$\int_0^{2\pi} \int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \left| \varphi'\left(f(re^{i\theta})\right) \right|^p \, dr \, d\theta < \infty.$$

This implies that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \left| \varphi'\left(f(re^{i\theta})\right) \right|^p \, dr < \infty, \quad \text{for a. e. } \theta.$$

But, since $\varphi' \circ f$ has a non-zero radial limit almost everywhere, this implies that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i heta})|^p \, dr < \infty, \quad ext{for a. e. } heta.$$

Contradiction.

ヘロア 人間 アメヨア 人口 ア

$$S_arphi(f)\in \mathcal{D}^p_{p-1},$$
 that is, $\int_{\mathbb{D}}(1-|z|)^{p-1}|f'(z)|^p|arphi'(f(z))|^p\, dA(z)<\infty.$

$$\int_0^{2\pi} \int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \left| \varphi'\left(f(re^{i\theta})\right) \right|^p \, dr \, d\theta < \infty.$$

This implies that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \left| \varphi'\left(f(re^{i\theta})\right) \right|^p \, dr < \infty, \quad \text{for a. e. } \theta.$$

But, since $\varphi' \circ f$ has a non-zero radial limit almost everywhere, this implies that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i heta})|^p \, dr < \infty, \quad ext{for a. e. } heta.$$

Contradiction.

ヘロア 人間 アメヨア 人口 ア

$$S_arphi(f)\in \mathcal{D}^p_{p-1},$$
 that is, $\int_\mathbb{D}(1-|z|)^{p-1}|f'(z)|^p|arphi'(f(z))|^p\,d\mathsf{A}(z)<\infty.$

$$\int_0^{2\pi} \int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \left| \varphi'\left(f(re^{i\theta})\right) \right|^p \, dr \, d\theta < \infty.$$

This implies that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \left| \varphi'\left(f(re^{i\theta})\right) \right|^p \, dr < \infty, \quad \text{for a. e. } \theta.$$

But, since $\varphi' \circ f$ has a non-zero radial limit almost everywhere, this implies that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i heta})|^p \, dr < \infty, \quad ext{for a. e. } heta.$$

Contradiction.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$S_arphi(f)\in \mathcal{D}^p_{p-1},$$
 that is, $\int_{\mathbb{D}}(1-|z|)^{p-1}|f'(z)|^p|arphi'(f(z))|^p\,dA(z)<\infty.$

$$\int_0^{2\pi} \int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \left| \varphi'\left(f(re^{i\theta})\right) \right|^p \, dr \, d\theta < \infty.$$

This implies that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \left| \varphi'\left(f(re^{i\theta})\right) \right|^p \, dr < \infty, \quad \text{for a. e. } \theta.$$

But, since $\varphi' \circ f$ has a non-zero radial limit almost everywhere, this implies that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \, dr < \infty, \quad \text{for a. e. } \theta.$$

Contradiction.

<ロ> (四) (四) (三) (三) (三)

$$S_arphi(f)\in \mathcal{D}^p_{p-1},$$
 that is, $\int_{\mathbb{D}}(1-|z|)^{p-1}|f'(z)|^p|arphi'(f(z))|^p\,dA(z)<\infty.$

$$\int_0^{2\pi} \int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \left| \varphi'\left(f(re^{i\theta})\right) \right|^p \, dr \, d\theta < \infty.$$

This implies that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i\theta})|^p \left| \varphi'\left(f(re^{i\theta})\right) \right|^p \, dr < \infty, \quad \text{for a. e. } \theta.$$

But, since $\varphi' \circ f$ has a non-zero radial limit almost everywhere, this implies that

$$\int_0^1 (1-r)^{p-1} |f'(re^{i heta})|^p \, dr < \infty, \quad ext{for a. e. } heta.$$

Contradiction.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- D. Girela and M. A. Márquez, Superposition operators between Q_p spaces and Hardy spaces, J. Math. Anal. Appl. 364 (2010), no. 2, 463–472.
- P. Galanopoulos, D. Girela and M. A. Márquez, Superposition operators, Hardy spaces, and Dirichlet type spaces, J. Math. Anal. Appl. 463 (2018), no. 2, 659–680.
- S. Domínguez and D. Girela, Sequences of zeros of analytic function spaces and weighted superposition operators, Monatsh. Math. **190** (2019), n. 4, 725–734.
- S. Domínguez and D. Girela, *A radial integrability result concerning bounded functions in analytic Besov spaces with applications*, Results in Mathematics **75**, Article number 67 (2020).
- S. Domínguez and D. Girela, Superposition operators between mixed norm spaces of analytic functions, Mediterranean J. Math. 18 (2021), no. 1, Article n. 18.

THANK YOU!

Daniel Girela Superposition operators ...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●