Superposition operators acting on spaces of analytic functions

Daniel Girela
Universidad de Málaga, Spain

International biweekly online Seminar on Analysis, Differential Equations and Mathematical Physics

May 4, 2023
$\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, the unit disc in \mathbb{C}.
$\mathrm{Hol}(\mathbb{T})$) is the snace of all analytic functions in \mathbb{D}.

Composition operators

Let φ be analytic in \mathbb{D} with $\varphi(\mathbb{D}) \subset \mathbb{D}$. The operator $C_{\varphi}: \operatorname{Hol}(\mathbb{D}) \rightarrow \operatorname{Hol}(\mathbb{D})$ defined by

$$
C_{\varphi}(f)=f \circ \varphi, \quad f \in \operatorname{Hol}(\mathbb{D}),
$$

is called the composition operator with symbol φ.
C_{φ} is a linear operator.
$\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, the unit disc in \mathbb{C}. $\mathrm{Hol}(\mathbb{D})$ is the space of all analytic functions in \mathbb{D}.

Composition operators

Let φ be analytic in \mathbb{D} with $\varphi(\mathbb{D}) \subset \mathbb{D}$. The operator $C_{\varphi}: \operatorname{Hol}(\mathbb{D}) \rightarrow \operatorname{Hol}(\mathbb{D})$ defined by

$$
C_{\varphi}(f)=f \circ \varphi, \quad f \in \operatorname{Hol}(\mathbb{D}),
$$

is called the composition operator with symbol φ.
C_{φ} is a linear operator.
$\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, the unit disc in \mathbb{C}.
$\operatorname{Hol}(\mathbb{D})$ is the space of all analytic functions in \mathbb{D}.

Composition operators

Let φ he analytic in \mathbb{D} with $\varphi(\mathbb{D}) \subset \mathbb{D}$. The operator $C_{\varphi}: \operatorname{Hol}(\mathbb{D}) \rightarrow \operatorname{Hol}(\mathbb{D})$ defined by

$$
C_{\varphi}(f)=f \circ \varphi, \quad f \in \operatorname{Hol}(\mathbb{D}),
$$

is called the composition operator with symbol φ.
C_{φ} is a linear operator.
$\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, the unit disc in \mathbb{C}.
$\operatorname{Hol}(\mathbb{D})$ is the space of all analytic functions in \mathbb{D}.

Composition operators
Let φ be analytic in \mathbb{D} with $\varphi(\mathbb{D}) \subset \mathbb{D}$. The operator $C_{\varphi}: \operatorname{Hol}(\mathbb{D}) \rightarrow \operatorname{Hol}(\mathbb{D})$ defined by

$$
C_{\varphi}(f)=f \circ \varphi, \quad f \in \operatorname{Hol}(\mathbb{D}),
$$

is called the composition operator with symbol φ.
C_{φ} is a linear operator.
$\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, the unit disc in \mathbb{C}.
$\operatorname{Hol}(\mathbb{D})$ is the space of all analytic functions in \mathbb{D}.

Composition operators
Let φ be analytic in \mathbb{D} with $\varphi(\mathbb{D}) \subset \mathbb{D}$. The operator $C_{\varphi}: \operatorname{Hol}(\mathbb{D}) \rightarrow \operatorname{Hol}(\mathbb{D})$ defined by

$$
C_{\varphi}(f)=f \circ \varphi, \quad f \in \operatorname{Hol}(\mathbb{D}),
$$

is called the composition operator with symbol φ.
C_{φ} is a linear operator.

Superposition operators

Given an entire function φ, the superposition operator
$S_{\varphi}: \operatorname{Hol}(\mathbb{D}) \longrightarrow \operatorname{Hol}(\mathbb{D})$ is defined by

$$
S_{\varphi}(f)=\varphi \circ f .
$$

Question

If X and Y are two (Banach) subspaces of $\operatorname{Hol}(\mathbb{D})$, for which entire functions φ does the operator S_{φ} map (continuously) X into Y ?

Remark

In general S_{φ} is not linear.
In fact, it is easy to see that \boldsymbol{S}_{φ} is linear if and only if φ is of the form $\varphi(z)=\lambda z, \lambda$ being a constant.

Superposition operators

Given an entire function φ, the superposition operator $S_{\varphi}: \operatorname{Hol}(\mathbb{D}) \longrightarrow \operatorname{Hol}(\mathbb{D})$ is defined by

$$
S_{\varphi}(f)=\varphi \circ f
$$

Question
If X and Y are two (Banach) subspaces of $\operatorname{Hol}(\mathbb{D})$, for which entire functions φ does the operator S_{φ} map (continuously) X into Y ?

```
Remark
In general S\varphi is not linear.
In fact, it is easy to see that S}\mp@subsup{S}{\varphi}{}\mathrm{ is linear if and only if }\varphi\mathrm{ is of the
form \varphi(z)=\lambdaz, \lambda being a constant.
```


Superposition operators

Given an entire function φ, the superposition operator $S_{\varphi}: \operatorname{Hol}(\mathbb{D}) \longrightarrow \operatorname{Hol}(\mathbb{D})$ is defined by

$$
S_{\varphi}(f)=\varphi \circ f
$$

Question

If X and Y are two (Banach) subspaces of $\operatorname{Hol}(\mathbb{D})$, for which entire functions φ does the operator S_{φ} map (continuously) X into Y ?

Remark

In general S_{φ} is not linear.
In fact, it is easy to see that \boldsymbol{S}_{φ} is linear if and only if φ is of the form $\varphi(z)=\lambda z, \lambda$ being a constant.

Superposition operators

Given an entire function φ, the superposition operator $S_{\varphi}: \operatorname{Hol}(\mathbb{D}) \longrightarrow \operatorname{Hol}(\mathbb{D})$ is defined by

$$
S_{\varphi}(f)=\varphi \circ f
$$

Question

If X and Y are two (Banach) subspaces of $\operatorname{Hol}(\mathbb{D})$, for which entire functions φ does the operator S_{φ} map (continuously) X into Y ?

```
Remark
In general S\varphi is not linear.
In fact, it is easy to see that S\varphi is linear if and only if }\varphi\mathrm{ is of the
form }\varphi(z)=\lambdaz,\lambda\mathrm{ being a constant.
```


Superposition operators

Given an entire function φ, the superposition operator $S_{\varphi}: \operatorname{Hol}(\mathbb{D}) \longrightarrow \operatorname{Hol}(\mathbb{D})$ is defined by

$$
S_{\varphi}(f)=\varphi \circ f
$$

Question

If X and Y are two (Banach) subspaces of $\operatorname{Hol}(\mathbb{D})$, for which entire functions φ does the operator S_{φ} map (continuously) X into Y ?

Remark

In general S_{φ} is not linear.
In fact, it is easy to see that S_{φ} is linear if and only if φ is of the form $\varphi(z)=\lambda z, \lambda$ being a constant.

It is clear that if Y contains the constant functions, and if φ is constant then we have that S_{φ} maps X into Y.

If $\varphi(z)=z$, then $S_{\varphi}(f)=f$ for every $f \in \operatorname{Hol}(\mathbb{D})$, and, hence, $S_{\varphi}(X) \subset Y \Leftrightarrow X \subset Y$

Informally, we can say that if $X \subset Y$, the answer to our question tells us 'how small is X compared with Y If there are a lot of φ 's for which $S_{\varphi}(X) \subset Y, X$ is 'small compared Y^{\prime}.

It is clear that if Y contains the constant functions, and if φ is constant then we have that S_{φ} maps X into Y.

If $\varphi(z)=z$, then $S_{\varphi}(f)=f$ for every $f \in \operatorname{Hol}(\mathbb{D})$, and, hence,

$$
S_{\varphi}(X) \subset Y \Leftrightarrow X \subset Y .
$$

Informally, we can say that if $X \subset Y$, the answer to our question tells us 'how small is X compared with Y If there are a lot of φ 's for which $S_{\varphi}(X) \subset Y, X$ is 'small compared Y^{\prime}.

It is clear that if Y contains the constant functions, and if φ is constant then we have that S_{φ} maps X into Y.

If $\varphi(z)=z$, then $S_{\varphi}(f)=f$ for every $f \in \operatorname{Hol}(\mathbb{D})$, and, hence,

$$
S_{\varphi}(X) \subset Y \Leftrightarrow X \subset Y .
$$

Informally, we can say that if $X \subset Y$, the answer to our question tells us 'how small is X compared with Y '.

It is clear that if Y contains the constant functions, and if φ is constant then we have that S_{φ} maps X into Y.

If $\varphi(z)=z$, then $S_{\varphi}(f)=f$ for every $f \in \operatorname{Hol}(\mathbb{D})$, and, hence,

$$
S_{\varphi}(X) \subset Y \Leftrightarrow X \subset Y .
$$

Informally, we can say that if $X \subset Y$, the answer to our question tells us 'how small is X compared with Y '. If there are a lot of φ 's for which $S_{\varphi}(X) \subset Y, X$ is 'small compared Y^{\prime}.
X and Y subspaces of $\operatorname{Hol}(\mathbb{D})$. We want to characterize those entire functions φ which act from X to Y by superposition.

It turns out that a number of distinct ideas can be used to deal with this problem depending on the spaces under consideration.

In this talk, I am going to try to present some of these ideas with a number of works I have made over the last few years in collaboration with
M. A. Márquez, P. Galanopoulos, and S. Domínguez.
X and Y subspaces of $\operatorname{Hol}(\mathbb{D})$. We want to characterize those entire functions φ which act from X to Y by superposition.

It turns out that a number of distinct ideas can be used to deal with this problem depending on the spaces under consideration.

> In this talk, I am going to try to present some of these ideas with a number of works I have made over the last few years in collaboration with
> M. A. Márquez, P. Galanopoulos, and S. Domínguez.
X and Y subspaces of $\operatorname{Hol}(\mathbb{D})$. We want to characterize those entire functions φ which act from X to Y by superposition.

It turns out that a number of distinct ideas can be used to deal with this problem depending on the spaces under consideration.

In this talk, I am going to try to present some of these ideas with a number of works I have made over the last few years in collaboration with
M. A. Márquez, P. Galanopoulos, and S. Domínguez.

Hardy spaces

If $0<p \leq \infty$, the Hardy space H^{p} consists of those $f \in \operatorname{Hol}(\mathbb{D})$ such that $\|f\|_{H^{p}} \stackrel{\text { def }}{=} \sup _{0<r<1} M_{p}(r, f)<\infty$.

$$
\begin{gathered}
M_{p}(r, f)=\left(\frac{1}{2 \pi} \int_{0}^{\infty}\left|f\left(r e^{i t}\right)\right|^{p} d t\right)^{1 / p} . \\
M_{\infty}(r, f)=\sup _{|z|=r}|f(z)|
\end{gathered}
$$

Bergman and Dirichlet spaces

For $0<p<\infty$ and $\alpha>-1$ the weighted Bergman space A_{α}^{p} consists of those $f \in \operatorname{Hol}(\mathbb{D})$ such that

$$
\|f\|_{A_{\alpha}^{p}} \stackrel{\text { def }}{=}\left((\alpha+1) \int_{\mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}|f(z)|^{p} d A(z)\right)^{1 / p}<\infty .
$$

The unweighted Bergman space A_{0}^{p} is simply denoted by A^{p}.
The space of Dirichlet type \mathcal{D}_{α}^{p} consists of those $f \in \operatorname{Hol}(\mathbb{D})$ such that $f^{\prime} \in A_{\alpha}^{D}$.

Bergman and Dirichlet spaces

For $0<p<\infty$ and $\alpha>-1$ the weighted Bergman space A_{α}^{p} consists of those $f \in \operatorname{Hol}(\mathbb{D})$ such that

$$
\|f\|_{A_{\alpha}^{p}} \stackrel{\text { def }}{=}\left((\alpha+1) \int_{\mathbb{D}}\left(1-|z|^{2}\right)^{\alpha}|f(z)|^{p} d A(z)\right)^{1 / p}<\infty .
$$

The unweighted Bergman space A_{0}^{p} is simply denoted by A^{p}.
The space of Dirichlet type \mathcal{D}_{α}^{p} consists of those $f \in \operatorname{Hol}(\mathbb{D})$ such that $f^{\prime} \in A_{\alpha}^{D}$.

BMOA and the Bloch space

The space BMOA consists of those functions $f \in H^{1}$ whose boundary values function has bounded mean oscillation, that is, lies in $B M O(\mathbb{T})$.
The Bloch space \mathcal{B} is the space of all functions $f \in \operatorname{Hol}(\mathbb{D})$ for which

We have the inclusions

$B M O A$ and the Bloch space

The space BMOA consists of those functions $f \in H^{1}$ whose boundary values function has bounded mean oscillation, that is, lies in $B M O(\mathbb{T})$.
The Bloch space \mathcal{B} is the space of all functions $f \in \operatorname{Hol}(\mathbb{D})$ for which

$$
\|f\|_{\mathcal{B}}=|f(0)|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty .
$$

We have the inclusions
$B M O A \subset \mathcal{B}, \quad H^{\infty} \subset B M O A \subset \bigcap H^{p}$.

BMOA and the Bloch space

The space BMOA consists of those functions $f \in H^{1}$ whose boundary values function has bounded mean oscillation, that is, lies in $B M O(\mathbb{T})$.
The Bloch space \mathcal{B} is the space of all functions $f \in \operatorname{Hol}(\mathbb{D})$ for which

$$
\|f\|_{\mathcal{B}}=|f(0)|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty .
$$

We have the inclusions

$$
B M O A \subset \mathcal{B}, \quad H^{\infty} \subset B M O A \subset \bigcap_{0<p<\infty} H^{p}
$$

Some results previous to our work

Let φ be an entire function.
For $0<p, q<\infty$, the superposition operator S_{φ} maps H^{p} into H^{q}, or A^{p} into A^{q}, if and only φ is a polynomial of degree less than or equal to p / q. [Cámera and Cámera and Giménez].

Buckley, Fernández and Vukotić studied superposition operators acting between the Dirichlet type spaces \mathcal{D}_{0}^{p} and \mathcal{D}^{q}

Álvarez, Márquez and Vukotić studied superposition operators acting between the Bloch space and Bergman spaces.

- φ acts from A^{P} into \mathcal{B} by superposition if and only if φ is constant.
- φ acts from \mathcal{B} into A^{p} by superposition if and only if φ has order less than one, or order one and type 0.

Some results previous to our work

Let φ be an entire function.
For $0<p, q<\infty$, the superposition operator S_{φ} maps H^{p} into H^{q}, or A^{p} into A^{q}, if and only φ is a polynomial of degree less than or equal to p / q. [Cámera and Cámera and Giménez].

Buckley, Fernández and Vukotić studied superposition operators acting between the Dirichlet type spaces \mathcal{D}_{0}^{p} and \mathcal{D}_{0}^{q}.

Álvarez, Márquez and Vukotić studied superposition operators acting between the Bloch space and Bergman spaces.
acts from A^{p} into \mathcal{B} by superposition if and only if φ is
constant.

- φ acts from \mathcal{B} into A^{p} by superposition if and only if φ has order less than one, or order one and type 0.

Some results previous to our work

Let φ be an entire function.
For $0<p, q<\infty$, the superposition operator S_{φ} maps H^{p} into H^{q}, or A^{p} into A^{q}, if and only φ is a polynomial of degree less than or equal to p / q. [Cámera and Cámera and Giménez].

Buckley, Fernández and Vukotić studied superposition operators acting between the Dirichlet type spaces \mathcal{D}_{0}^{p} and \mathcal{D}_{0}^{q}.

Álvarez, Márquez and Vukotić studied superposition operators acting between the Bloch space and Bergman spaces.

- φ acts from A^{p} into \mathcal{B} by superposition if and only if φ is constant.
- φ acts from \mathcal{B} into $A^{\mathcal{P}}$ by superposition if and only if φ has order less than one, or order one and type 0 .

The results we have stated and, actually, all the results we know in this setting have the following in common: If φ acts from X to Y by superposition then so does Question

Is this always true?
Or, at least ... find a general theorem in this line
In collaboration with S. Domínguez (2019) we have found some classes of spaces Y with the property that if φ is an entire function which acts from a certain space X into Y by superposition then so does φ^{\prime}.

The results we have stated and, actually, all the results we know in this setting have the following in common: If φ acts from X to Y by superposition then so does φ^{\prime}.

Question

Is this always true?
Or, at least ... find a general theorem in this line
In collaboration with S. Domínguez (2019) we have found some classes of spaces Y with the property that if φ is an entire function which acts from a certain space X into Y by superposition then so does φ^{\prime}.

The results we have stated and, actually, all the results we know in this setting have the following in common: If φ acts from X to Y by superposition then so does φ^{\prime}.

Question

Is this always true?
Or, at least ... find a general theorem in this line
In collaboration with S. Domínguez (2019) we have found some classes of spaces Y with the property that if φ is an entire function which acts from a certain space X into Y by superposition then so does

The results we have stated and, actually, all the results we know in this setting have the following in common: If φ acts from X to Y by superposition then so does φ^{\prime}.

Question

Is this always true?
Or, at least ... find a general theorem in this line ...
In collaboration with S. Domínguez (2019) we have found some classes of spaces Y with the property that if φ is an entire function which acts from a certain space X into Y by superposition then so does

The results we have stated and, actually, all the results we know in this setting have the following in common: If φ acts from X to Y by superposition then so does φ^{\prime}.

Question

Is this always true?
Or, at least ... find a general theorem in this line ...
In collaboration with S. Domínguez (2019) we have found some classes of spaces Y with the property that if φ is an entire function which acts from a certain space X into Y by superposition then so does φ^{\prime}.

Spaces of analytic functions with restricted growth

A weight v on \mathbb{D} will be a positive and continuous function defined on \mathbb{D} which is radial, i. e. $v(z)=v(|z|)$, for all $z \in \mathbb{D}$, and satisfying that $v(r)$ is strictly decreasing in $[0,1)$ and that $\lim _{r \rightarrow 1} v(r)=0$. For such a weight, the weighted Banach space

We have proved that our above aim is obtained if we take

Spaces of analytic functions with restricted growth

A weight v on \mathbb{D} will be a positive and continuous function defined on \mathbb{D} which is radial, i. e. $v(z)=v(|z|)$, for all $z \in \mathbb{D}$, and satisfying that $v(r)$ is strictly decreasing in $[0,1)$ and that $\lim _{r \rightarrow 1} v(r)=0$. For such a weight, the weighted Banach space H_{v}^{∞} is defined by

$$
H_{v}^{\infty}=\left\{f \in \operatorname{Hol}(\mathbb{D}):\|f\|_{v} \stackrel{\text { def }}{=} \sup _{z \in \mathbb{D}} v(z)|f(z)|<\infty\right\} .
$$

We have proved that our above aim is obtained if we take

Spaces of analytic functions with restricted growth

A weight v on \mathbb{D} will be a positive and continuous function defined on \mathbb{D} which is radial, i. e. $v(z)=v(|z|)$, for all $z \in \mathbb{D}$, and satisfying that $v(r)$ is strictly decreasing in $[0,1)$ and that $\lim _{r \rightarrow 1} v(r)=0$. For such a weight, the weighted Banach space H_{v}^{∞} is defined by

$$
H_{v}^{\infty}=\left\{f \in \operatorname{Hol}(\mathbb{D}):\|f\|_{v} \stackrel{\text { def }}{=} \sup _{z \in \mathbb{D}} v(z)|f(z)|<\infty\right\} .
$$

We have proved that our above aim is obtained if we take $Y=H_{v}^{\infty}$.

Theorem

Let v be weight on \mathbb{D} and let $(X,\|\cdot\|)$ be a Banach space of analytic function in \mathbb{D}. Let φ be an entire function. If the superposition operator S_{φ} is a bounded operator from X into H_{v}^{∞}, then $S_{\varphi^{\prime}}$ maps X into H_{v}^{∞}.

Basic steps in the proof

Suppose S_{φ} is a bounded operator form X into H_{v}^{∞}. Take $f \in X$, then we prove:

- If $|f(z)| \leq 1$ then $\left|S_{\varphi^{\prime}}(f)(z)\right| \leq \frac{\operatorname{Av}(0)}{v(z)}$ with
$A=\sup _{|\xi| \leq 1}\left|\varphi^{\prime}(\xi)\right|$
- If $|f(z)| \geq 1$ then

$$
\left|S_{\varphi^{\prime}}(f)(z)\right| \leq \frac{1}{2}\left|S_{\varphi}(g)(z)\right|,
$$

for a certain $g \in X$ (which depends on z) and satisfies $\|g\|=\|f\|$.

- Putting these two things together we find $C>0$ such that $S_{\varphi^{\prime}}(f)(z) \left\lvert\, \leq \frac{C}{v(z)}\right.$. This gives $S_{\varphi^{\prime}}(f) \in H_{v}^{\infty}$.

Basic steps in the proof

Suppose S_{φ} is a bounded operator form X into H_{v}^{∞}. Take $f \in X$, then we prove:

- If $|f(z)| \leq 1$ then $\left|S_{\varphi^{\prime}}(f)(z)\right| \leq \frac{\operatorname{Av}(0)}{v(z)}$ with
$A=\sup _{|\xi| \leq 1}\left|\varphi^{\prime}(\xi)\right|$.
- If $|f(z)| \geq 1$ then

$$
\left|S_{\varphi^{\prime}}(f)(z)\right| \leq \frac{1}{2}\left|S_{\varphi}(g)(z)\right|
$$

for a certain $g \in X$ (which depends on z) and satisfies $\|g\|=\|f\|$.

- Putting these two things together we find $C>0$ such that $S_{\varphi^{\prime}}(f)(z) \left\lvert\, \leq \frac{C}{v(z)}\right.$. This gives $S_{\varphi^{\prime}}(f) \in H_{v}^{\infty}$.

Basic steps in the proof

Suppose S_{φ} is a bounded operator form X into H_{v}^{∞}. Take $f \in X$, then we prove:

- If $|f(z)| \leq 1$ then $\left|S_{\varphi^{\prime}}(f)(z)\right| \leq \frac{\operatorname{Av}(0)}{v(z)}$ with
$A=\sup _{|\xi| \leq 1}\left|\varphi^{\prime}(\xi)\right|$.
- If $|f(z)| \geq 1$ then

$$
\left|S_{\varphi^{\prime}}(f)(z)\right| \leq \frac{1}{2}\left|S_{\varphi}(g)(z)\right|
$$

for a certain $g \in X$ (which depends on z) and satisfies $\|g\|=\|f\|$.

- Putting these two things together we find $C>0$ such that $S_{\varphi^{\prime}}(f)(z) \mid$

Basic steps in the proof

Suppose S_{φ} is a bounded operator form X into H_{v}^{∞}. Take $f \in X$, then we prove:

- If $|f(z)| \leq 1$ then $\left|S_{\varphi^{\prime}}(f)(z)\right| \leq \frac{\operatorname{Av}(0)}{v(z)}$ with
$A=\sup _{|\xi| \leq 1}\left|\varphi^{\prime}(\xi)\right|$.
- If $|f(z)| \geq 1$ then

$$
\left|S_{\varphi^{\prime}}(f)(z)\right| \leq \frac{1}{2}\left|S_{\varphi}(g)(z)\right|,
$$

for a certain $g \in X$ (which depends on z) and satisfies $\|g\|=\|f\|$.

- Putting these two things together we find $C>0$ such that $\left|S_{\varphi^{\prime}}(f)(z)\right| \leq \frac{C}{v(z)}$. This gives $S_{\varphi^{\prime}}(f) \in H_{v}^{\infty}$.

If v is a weight on \mathbb{D}, we define $D H_{v}^{\infty}$ as follows

$$
D H_{v}^{\infty}=\left\{f \in \operatorname{Hol}(\mathbb{D}): f^{\prime} \in H_{v}^{\infty}\right\} .
$$

The space $D H_{v}^{\infty}$ is a Banach space with the norm $\|\cdot\|_{D, v}$ defined by

$$
\|f\|_{D, v}=|f(0)|+\left\|f^{\prime}\right\|_{v} .
$$

> Theorem
> Let v be a weight on \mathbb{D} and let $(X,\|\cdot\|)$ be a Banach space of analytic function in \mathbb{D}. Let φ be an entire function. If the superposition operator S_{φ} is a bounded operator from X into $D H_{V}^{\infty}$, then $S_{\varphi^{\prime}}$ maps X into $D H_{v}^{\infty}$

If v is a weight on \mathbb{D}, we define $D H_{v}^{\infty}$ as follows

$$
D H_{v}^{\infty}=\left\{f \in \operatorname{Hol}(\mathbb{D}): f^{\prime} \in H_{v}^{\infty}\right\}
$$

The space $D H_{v}^{\infty}$ is a Banach space with the norm $\|\cdot\|_{D, v}$ defined by

$$
\|f\|_{D, v}=|f(0)|+\left\|f^{\prime}\right\|_{v}
$$

Theorem

Let v be a weight on \mathbb{D} and let $(X,\|\cdot\|)$ be a Banach space of analytic function in \mathbb{D}. Let φ be an entire function. If the superposition operator S_{φ} is a bounded operator from X into $D H_{v}^{\infty}$, then $S_{\varphi^{\prime}}$ maps X into $D H_{v}^{\infty}$.

If we take $v(z)=(1-|z|)$, the space $D H_{v}^{\infty}$ reduces to the Bloch space. Hence, as a particular case we obtain.

Coroiliary

Let $(X,\|\cdot\|)$ be a Banach space of analytic function in \mathbb{D}. Let φ be an entire function. If the superposition operator S_{φ} is a bounded operator from X into the Bloch space \mathcal{B}, then $S_{\varphi^{\prime}}$ maps X into \mathcal{B}.

If we take $v(z)=(1-|z|)$, the space $D H_{v}^{\infty}$ reduces to the Bloch space. Hence, as a particular case we obtain.

Corollary

Let $(X,\|\cdot\|)$ be a Banach space of analytic function in \mathbb{D}. Let φ be an entire function. If the superposition operator S_{φ} is a bounded operator from X into the Bloch space \mathcal{B}, then $S_{\varphi^{\prime}}$ maps X into \mathcal{B}.

Sets of zeros as a tool

Let us recall one the results I mentioned before.
Theorem (AMV). Suppose $0<p<\infty$ and φ is an entire function. If φ acts from A^{p} into \mathcal{B} under superposition, then φ is constant.

The original proof uses a number of results on conformal mappings.
We have used different ideas to prove the following extension.

Sets of zeros as a tool

Let us recall one the results I mentioned before.
Theorem (AMV). Suppose $0<p<\infty$ and φ is an entire function. If φ acts from A^{p} into \mathcal{B} under superposition, then φ is constant.

The original proof uses a number of results on conformal mappings.
We have used different ideas to prove the following extension.

Sets of zeros as a tool

Let us recall one the results I mentioned before.
Theorem (AMV). Suppose $0<p<\infty$ and φ is an entire function. If φ acts from A^{p} into \mathcal{B} under superposition, then φ is constant.

The original proof uses a number of results on conformal mappings.
We have used different ideas to prove the following extension.

Sets of zeros as a tool

Let us recall one the results I mentioned before.
Theorem (AMV). Suppose $0<p<\infty$ and φ is an entire function. If φ acts from A^{p} into \mathcal{B} under superposition, then φ is constant.

The original proof uses a number of results on conformal mappings.
We have used different ideas to prove the following extension.

Theorem (D-G)

Suppose that $0<p<\infty, \alpha>-1$ and let φ be an entire function. If $S_{\varphi}\left(A_{\alpha}^{p}\right) \subset \mathcal{B}$ then φ is constant.

The ingredient in our proof is that there exists 'a zero sequence of $A_{\alpha}^{p,}$ which is not 'a zero sequence of \mathcal{B} '
Indeed, it is known (G-Nowak-Waniurski-2000) that if $\left\{z_{k}\right\}$ is the sequence of zeros of a function $f \in \mathcal{B}$ with $f(0) \neq 0$ then

$$
\prod_{k=1}^{n} \frac{1}{\left|z_{k}\right|}=\mathrm{O}\left((\log n)^{1 / 2}\right) \cdot(*)
$$

While (Horowitz-1974) proved that for any given $\varepsilon>0$, there exist $g \in A_{\alpha}^{p}$ with $g(0) \neq 0$ whose sequence of zeros $\left\{z_{k}\right\}$ satisfies

$$
\prod_{k=1}^{n} \frac{1}{\left|z_{k}\right|} \neq \mathrm{O}\left(n^{(1+\alpha) /(p(1+\varepsilon))}\right) \cdot(* *)
$$

Theorem (D-G)

Suppose that $0<p<\infty, \alpha>-1$ and let φ be an entire function. If $S_{\varphi}\left(A_{\alpha}^{\rho}\right) \subset \mathcal{B}$ then φ is constant.

The ingredient in our proof is that there exists 'a zero sequence of $A_{\alpha}^{p,}$ which is not 'a zero sequence of \mathcal{B} '.
Indeed, it is known (G-Nowak-Waniurski-2000) that if $\left\{z_{k}\right\}$ is the sequence of zeros of a function $f \in \mathcal{B}$ with $f(0) \neq 0$ then

While (Horowitz-1974) proved that for any given $\varepsilon>0$, there exist $g \in A_{\alpha}^{p}$ with $g(0) \neq 0$ whose sequence of zeros $\left\{z_{k}\right\}$ satisfies

Theorem (D-G)

Suppose that $0<p<\infty, \alpha>-1$ and let φ be an entire function. If $S_{\varphi}\left(A_{\alpha}^{p}\right) \subset \mathcal{B}$ then φ is constant.

The ingredient in our proof is that there exists 'a zero sequence of $A_{\alpha}^{p,}$ which is not 'a zero sequence of \mathcal{B} '. Indeed, it is known (G-Nowak-Waniurski-2000) that if $\left\{z_{k}\right\}$ is the sequence of zeros of a function $f \in \mathcal{B}$ with $f(0) \neq 0$ then

$$
\prod_{k=1}^{n} \frac{1}{\left|z_{k}\right|}=\mathrm{O}\left((\log n)^{1 / 2}\right) \cdot(*)
$$

While (Horowitz-1974) proved that for any given $\varepsilon>0$, there exist $g \in A_{\alpha}^{p}$ with $g(0) \neq 0$ whose sequence of zeros $\left\{z_{k}\right\}$ satisfies

$$
\prod_{k=1}^{n} \frac{1}{\left|z_{k}\right|} \neq \mathrm{O}\left(n^{(1+\alpha) /(p(1+\varepsilon))}\right) \cdot(* *)
$$

Suppose φ is not constant and $S_{\varphi}\left(A_{\alpha}^{p}\right) \subset \mathcal{B}$. Take $g \in A_{\alpha}^{p}, g \not \equiv 0$ whose sequence of zeros satisfies (${ }^{* *}$) for some $\epsilon>0$.
We have that $S_{\varphi}(g)=\varphi \circ g \in \mathcal{B}$ and $\varphi \circ g$ is not constant. Set $F=S_{\varphi}(g)-\varphi(0)$. We have that

$$
F=S_{\varphi}(g)-\varphi(0)=\varphi \circ g-\varphi(0) \in \mathcal{B}, \quad \text { and } \quad F \not \equiv 0
$$

Now, all the zeros of g are zeros of F. In other words, the sequence $\left\{z_{k}\right\}$ is contained in the sequence $\left\{\xi_{k}\right\}$ of zeros of F. Since $\left\{z_{k}\right\}$ satisfies $\left(^{* *}\right),\left\{\xi_{k}\right\}$ does not satisfies (*). This contradicts the fact that $F \in \mathcal{B}$.

Let X and Y be two spaces of analytic functions in \mathbb{D} satisfying the following conditions:
(i) X contains the constants.
(ii) There exists a function $f \in X$ with $f(0) \neq 0$ whose sequence of zeros $\left\{z_{k}\right\}$ is not a subsequence of a sequence of zeros of Y.
Let φ be an entire funtion. Then φ acts from X into Y by superposition if and only if φ is constant. .

Hardy space, \mathcal{D}_{p-1}^{p}-spaces, BMOA, \mathcal{B}

Among all the spaces of Dirichlet type \mathcal{D}_{α}^{p}, the spaces \mathcal{D}_{p-1}^{p} are the closest ones to Hardy spaces.

Hardy space, \mathcal{D}_{p-1}^{p}-spaces, BMOA, \mathcal{B}

Among all the spaces of Dirichlet type \mathcal{D}_{α}^{p}, the spaces \mathcal{D}_{p-1}^{p} are the closest ones to Hardy spaces.

Hardy space, \mathcal{D}_{p-1}^{p}-spaces, BMOA, \mathcal{B}

Among all the spaces of Dirichlet type \mathcal{D}_{α}^{p}, the spaces \mathcal{D}_{p-1}^{p} are the closest ones to Hardy spaces.

$$
\mathcal{D}_{p-1}^{p} \subset H^{p} \subset A^{2 p}, \quad 0<p \leq 2 .
$$

Hardy space, \mathcal{D}_{p-1}^{p}-spaces, BMOA, \mathcal{B}

Among all the spaces of Dirichlet type \mathcal{D}_{α}^{p}, the spaces \mathcal{D}_{p-1}^{p} are the closest ones to Hardy spaces.

$$
\begin{array}{ll}
\mathcal{D}_{p-1}^{p} \subset H^{p} \subset A^{2 p}, & 0<p \leq 2 . \\
H^{p} \subset \mathcal{D}_{p-1}^{p} \subset A^{2 p}, & 2 \leq p<\infty .
\end{array}
$$

Similarities

- For $0<p \leq 2$, the Carleson measures for H^{p} and those for \mathcal{D}_{p-1}^{p} are the same.
- The univalent functions in H^{p} and $D_{p-1}^{p}(0<p<\infty)$ are the same (BGP2004).
- A number of operators are bounded on H^{P} iff and only if they are bounded for \mathcal{D}_{p-1}^{p}.
- In some cases, it is useful to go through \mathcal{D}_{p-1}^{p} when one wants to study the action of an operator on H^{p}.

Similarities

- For $0<p \leq 2$, the Carleson measures for H^{p} and those for \mathcal{D}_{p-1}^{p} are the same.
- The univalent functions in H^{p} and $\mathcal{D}_{p-1}^{p}(0<p<\infty)$ are the same (BGP2004).
- A number of operators are bounded on H^{P} iff and only if they are bounded for \mathcal{D}_{p-}^{p}
- In some cases, it is useful to go through \mathcal{D}_{p-1}^{p} when one wants to study the action of an operator on H^{p}.

Similarities

- For $0<p \leq 2$, the Carleson measures for H^{p} and those for \mathcal{D}_{p-1}^{p} are the same.
- The univalent functions in H^{p} and $\mathcal{D}_{p-1}^{p}(0<p<\infty)$ are the same (BGP2004).
- A number of operators are bounded on H^{p} iff and only if they are bounded for \mathcal{D}_{p-1}^{p}.

- In some cases, it is useful to go through \mathcal{D}_{p-1}^{p} when one wants to study the action of an operator on H^{P}.

Similarities

- For $0<p \leq 2$, the Carleson measures for H^{p} and those for \mathcal{D}_{p-1}^{p} are the same.
- The univalent functions in H^{p} and $\mathcal{D}_{p-1}^{p}(0<p<\infty)$ are the same (BGP2004).
- A number of operators are bounded on H^{p} iff and only if they are bounded for \mathcal{D}_{p-1}^{p}.
- In some cases, it is useful to go through \mathcal{D}_{p-1}^{p} when one wants to study the action of an operator on H^{p}.

Differences

- $H^{\infty} \not \subset \mathcal{D}_{p-1}^{p}$, if $0<p<2$.

There are Blaschke products not belonging to any of the \mathcal{D}_{p-1}^{p}-spaces, $0<p<2$.

- For $p>2$, there are functions in \mathcal{D}_{p-1}^{p} without radial limits.
- There is no inclusion relation between \mathcal{D}_{p-1}^{p} and \mathcal{D}_{q-1}^{q}, $p \neq q$.
- The zero sequence of a \mathcal{D}_{p-1}^{p}-function, $p>2$, may not satisfy the Blaschke condition.
- Even though it was conjectured that that the Carleson measures for $\mathcal{D}_{p-1}^{p}(p>2)$ were the same, this is not true (GP2006).

Differences

- $H^{\infty} \not \subset \mathcal{D}_{p-1}^{p}$, if $0<p<2$.

There are Blaschke products not belonging to any of the \mathcal{D}_{p-1}^{p}-spaces, $0<p<2$.

- For $p>2$, there are functions in \mathcal{D}_{p-1}^{p} without radial limits.
- There is no inclusion relation between \mathcal{D}_{p-1}^{p} and \mathcal{D}_{q-1}^{q}, $p \neq q$.
- The zero sequence of a D_{p-1}^{p}-function, $p>2$, may not satisfy the Blaschke condition.
- Even though it was conjectured that that the Carleson measures for $\mathcal{D}_{p-1}^{p}(p>2)$ were the same, this is not true (GP2006).

Differences

- $H^{\infty} \not \subset \mathcal{D}_{p-1}^{p}$, if $0<p<2$.

There are Blaschke products not belonging to any of the \mathcal{D}_{p-1}^{p}-spaces, $0<p<2$.

- For $p>2$, there are functions in \mathcal{D}_{p-1}^{p} without radial limits.
- There is no inclusion relation between \mathcal{D}_{p-1}^{p} and \mathcal{D}_{q-1}^{q}, $p \neq q$.
- The zero sequence of a D_{p-1-1}^{p} function, $p>2$, may not satisfy the Blaschke condition.
- Even though it was conjectured that that the Carleson measures for $\mathcal{D}_{p-1}^{p}(p>2)$ were the same, this is not true (GP2006).

Differences

- $H^{\infty} \not \subset \mathcal{D}_{p-1}^{p}$, if $0<p<2$.

There are Blaschke products not belonging to any of the \mathcal{D}_{p-1}^{p}-spaces, $0<p<2$.

- For $p>2$, there are functions in \mathcal{D}_{p-1}^{p} without radial limits.
- There is no inclusion relation between \mathcal{D}_{p-1}^{p} and \mathcal{D}_{q-1}^{q}, $p \neq q$.
- The zero sequence of a \mathcal{D}_{D-1}^{p}-function, $p>2$, may not satisfy the Blaschke condition.
- Even though it was conjectured that that the Carleson measures for $\mathcal{D}_{p-1}^{p}(p>2)$ were the same, this is not true (GP2006)

Differences

- $H^{\infty} \not \subset \mathcal{D}_{p-1}^{p}$, if $0<p<2$.

There are Blaschke products not belonging to any of the \mathcal{D}_{p-1}^{p}-spaces, $0<p<2$.

- For $p>2$, there are functions in \mathcal{D}_{p-1}^{p} without radial limits.
- There is no inclusion relation between \mathcal{D}_{p-1}^{p} and \mathcal{D}_{q-1}^{q}, $p \neq q$.
- The zero sequence of a \mathcal{D}_{p-1}^{p}-function, $p>2$, may not satisfy the Blaschke condition.
- Even though it was conjectured that that the Carleson measures for $\mathcal{D}_{p-1}^{p}(p>2)$ were the same, this is not true (GP2006)

Differences

- $H^{\infty} \not \subset \mathcal{D}_{p-1}^{p}$, if $0<p<2$.

There are Blaschke products not belonging to any of the \mathcal{D}_{p-1}^{p}-spaces, $0<p<2$.

- For $p>2$, there are functions in \mathcal{D}_{p-1}^{p} without radial limits.
- There is no inclusion relation between \mathcal{D}_{p-1}^{p} and \mathcal{D}_{q-1}^{q}, $p \neq q$.
- The zero sequence of a \mathcal{D}_{p-1}^{p}-function, $p>2$, may not satisfy the Blaschke condition.
- Even though it was conjectured that that the Carleson measures for $\mathcal{D}_{p-1}^{p}(p>2)$ were the same, this is not true (GP2006).

Objective

Studying similarities and differences between Hardy spaces and \mathcal{D}_{p-1}^{p}-spaces regarding superposition operators.

Let us consider superposition operators between the Hardy spaces and the spaces $B M O A$ and the Bloch space \mathcal{B}, and compare them with those between the \mathcal{D}_{p-1}^{p}-spaces and $B M O A$ or \mathcal{B}.

Objective

Studying similarities and differences between Hardy spaces and \mathcal{D}_{p-1}^{p}-spaces regarding superposition operators.

Let us consider superposition operators between the Hardy spaces and the spaces $B M O A$ and the Bloch space \mathcal{B}, and compare them with those between the \mathcal{D}_{p-1}^{p}-spaces and BMOA or \mathcal{B}.

Objective

Studying similarities and differences between Hardy spaces and \mathcal{D}_{p-1}^{p}-spaces regarding superposition operators.

Let us consider superposition operators between the Hardy spaces and the spaces $B M O A$ and the Bloch space \mathcal{B}, and compare them with those between the \mathcal{D}_{p-1}^{p}-spaces and $B M O A$ or \mathcal{B}.

Superposition operators between BMOA spaces and Hardy spaces

In a work in collaboration with M. A. Márquez we proved the following.

Theorem

Let φ be an entire function. Then
(a) For $0<p<\infty, S_{\varphi}(\mathcal{B}) \subset H^{p}$ if and only if φ is constant.
(b) For $0<p<\infty, S_{\varphi}(B M O A) \subset H^{p}$ if and only if φ is of order less than one, or of order one and type zero.
(a) can be proved using the idea on the zero sequences.
(b) is more difficult. I am not going to give the details. We use the John-Niremberg theorem.

Superposition operators between BMOA spaces and Hardy spaces

In a work in collaboration with M. A. Márquez we proved the following.

```
Theorem
Let }\varphi\mathrm{ be an entire function. Then
(a) For 0<p<\infty, S}(\mathcal{B})\subset\mp@subsup{H}{}{p}\mathrm{ if and only if }\varphi\mathrm{ is constant.
(b) For 0<p<\infty, S\varphi}(BMOA)\subset\mp@subsup{H}{}{p}\mathrm{ if and only if }\varphi\mathrm{ is of order
    less than one, or of order one and type zero.
```

(a) can be proved using the idea on the zero sequences.
(b) is more difficult. I am not going to give the details. We use the John-Niremberg theorem.

Superposition operators between BMOA spaces and Hardy spaces

In a work in collaboration with M. A. Márquez we proved the following.

Theorem

Let φ be an entire function. Then

(a) can be proved using the idea on the zero sequences.
(b) is more difficult. I am not going to give the details. We use the John-Niremberg theorem.

Superposition operators between BMOA spaces and Hardy spaces

In a work in collaboration with M. A. Márquez we proved the following.

Theorem

Let φ be an entire function. Then
(a) For $0<p<\infty, S_{\varphi}(\mathcal{B}) \subset H^{p}$ if and only if φ is constant.
(b) For $0<p<\infty, S_{\varphi}(B M O A) \subset H^{p}$ if and only if φ is of order
less than one, or of order one and type zero.
(a) can be proved using the idea on the zero sequences.
(b) is more difficult. I am not going to give the details. We use the John-Niremberg theorem.

Superposition operators between BMOA spaces and Hardy spaces

In a work in collaboration with M. A. Márquez we proved the following.

Theorem

Let φ be an entire function. Then
(a) For $0<p<\infty, S_{\varphi}(\mathcal{B}) \subset H^{p}$ if and only if φ is constant.
(b) For $0<p<\infty, S_{\varphi}(B M O A) \subset H^{p}$ if and only if φ is of order less than one, or of order one and type zero.
(a) can be proved using the idea on the zero sequences.
(b) is more difficult. I am not going to give the details. We use the John-Niremberg theorem.

Superposition operators between BMOA spaces and Hardy spaces

In a work in collaboration with M. A. Márquez we proved the following.

Theorem

Let φ be an entire function. Then
(a) For $0<p<\infty, S_{\varphi}(\mathcal{B}) \subset H^{p}$ if and only if φ is constant.
(b) For $0<p<\infty, S_{\varphi}(B M O A) \subset H^{p}$ if and only if φ is of order less than one, or of order one and type zero.
(a) can be proved using the idea on the zero sequences.
(b) is more difficult. I am not going to give the details. We use the John-Niremberg theorem.

Superposition operators between BMOA spaces and Hardy spaces

In a work in collaboration with M. A. Márquez we proved the following.

Theorem

Let φ be an entire function. Then
(a) For $0<p<\infty, S_{\varphi}(\mathcal{B}) \subset H^{p}$ if and only if φ is constant.
(b) For $0<p<\infty, S_{\varphi}(B M O A) \subset H^{p}$ if and only if φ is of order less than one, or of order one and type zero.
(a) can be proved using the idea on the zero sequences.
(b) is more difficult. I am not going to give the details. We use the John-Niremberg theorem.

Superposition operators from the Bloch space into \mathcal{D}_{p-1}^{p}-spaces

We know that for any p

$$
S_{\varphi}(\mathcal{B}) \subset H^{P} \Leftrightarrow \varphi \text { is constant. }
$$

Since $\mathcal{D}_{p-1}^{p} \subset H^{p}$ for $p \leq 2$, this implies:

If $0<p \leq 2$, then $S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$ if and only if φ is constant.

What about the case 2

Superposition operators from the Bloch space into \mathcal{D}_{p-1}^{p}-spaces

We know that for any p

Since $\mathcal{D}_{p-1}^{p} \subset H^{p}$ for $p \leq 2$, this implies:

If $0<p \leq 2$, then $S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$ if and only if φ is constant.

What about the case 2

Superposition operators from the Bloch space into \mathcal{D}_{p-1}^{p}-spaces

We know that for any p

$$
S_{\varphi}(\mathcal{B}) \subset H^{p} \Leftrightarrow \varphi \text { is constant. }
$$

Since $\mathcal{D}_{p-1}^{p} \subset H^{p}$ for $p \leq 2$, this implies:

If $0<p \leq 2$, then $S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$ if and only if φ is constant.

What about the case 2

Superposition operators from the Bloch space into \mathcal{D}_{p-1}^{p}-spaces

We know that for any p

$$
S_{\varphi}(\mathcal{B}) \subset H^{p} \Leftrightarrow \varphi \text { is constant. }
$$

Since $\mathcal{D}_{p-1}^{p} \subset H^{p}$ for $p \leq 2$, this implies:

If $0<p \leq 2$, then $S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$ if and only if φ is constant.

What about the case 2

Superposition operators from the Bloch space into \mathcal{D}_{p-1}^{p}-spaces

We know that for any p

$$
S_{\varphi}(\mathcal{B}) \subset H^{p} \Leftrightarrow \varphi \text { is constant. }
$$

Since $\mathcal{D}_{p-1}^{p} \subset H^{p}$ for $p \leq 2$, this implies:
If $0<p \leq 2$, then $S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$ if and only if φ is constant.

What about the case $2<p<\infty$?

Superposition operators from the Bloch space into \mathcal{D}_{p-1}^{p}-spaces

We know that for any p

$$
S_{\varphi}(\mathcal{B}) \subset H^{p} \Leftrightarrow \varphi \text { is constant. }
$$

Since $\mathcal{D}_{p-1}^{p} \subset H^{p}$ for $p \leq 2$, this implies:
If $0<p \leq 2$, then $S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$ if and only if φ is constant.

What about the case $2<p<\infty$?

Superposition operators from \mathcal{B} into $\mathcal{D}_{p-1}^{p}, 2<p<\infty$

There are function in $\mathcal{D}_{p-1}^{p}(p>2)$ whose sequence of zeros do not satisfy the Blaschke condition. So...

More precise results about the zero sequences of Bloch

functions and $\mathcal{D}_{p=1}^{p}$-functions
Suppose $f \in \mathcal{B}$ with $f(0) \neq 0$ and let $\left\{a_{n}\right\}$ be the (ordered) sequence of the zeros of f. Then

$$
\prod_{n=1}^{N} \frac{1}{\left|a_{n}\right|}=O\left((\log N)^{1 / 2}\right), \quad \text { as } N \rightarrow \infty
$$

This is sharp: There exists $f \in \mathcal{B}$ for which

$$
\prod_{n=1}^{N} \frac{1}{\left|a_{n}\right|} \neq 0\left((\log N)^{1 / 2}\right)
$$

Superposition operators from \mathcal{B} into $\mathcal{D}_{p-1}^{p}, 2<p<\infty$

There are function in $\mathcal{D}_{p-1}^{p}(p>2)$ whose sequence of zeros do not satisfy the Blaschke condition. So...

More precise resulis about the zero sequences of Bloch functions and \mathcal{D}_{D-1}^{p}-functions Suppose $f \in \mathcal{B}$ with $f(0) \neq 0$ and let $\left\{a_{n}\right\}$ be the (ordered) sequence of the zeros of f. Then

This is sharp: There exists $f \in \mathcal{B}$ for which

$$
\prod_{n=1}^{N} \frac{1}{\left|a_{n}\right|} \neq o\left((\log N)^{1 / 2}\right)
$$

Superposition operators from \mathcal{B} into $\mathcal{D}_{p-1}^{p}, 2<p<\infty$

There are function in $\mathcal{D}_{p-1}^{p}(p>2)$ whose sequence of zeros do not satisfy the Blaschke condition. So...

More precise results about the zero sequences of Bloch functions and \mathcal{D}_{p-1}^{p}-functions
Suppose $f \in \mathcal{B}$ with $f(0) \neq 0$ and let $\left\{a_{n}\right\}$ be the (ordered) sequence of the zeros of f. Then

This is sharp: There exists $f \in \mathcal{B}$ for which

Superposition operators from \mathcal{B} into $\mathcal{D}_{p-1}^{p}, 2<p<\infty$

There are function in $\mathcal{D}_{p-1}^{p}(p>2)$ whose sequence of zeros do not satisfy the Blaschke condition. So...

More precise results about the zero sequences of Bloch functions and \mathcal{D}_{p-1}^{p}-functions
Suppose $f \in \mathcal{B}$ with $f(0) \neq 0$ and let $\left\{a_{n}\right\}$ be the (ordered) sequence of the zeros of f. Then

This is sharp: There exists $f \in \mathcal{B}$ for which

Superposition operators from \mathcal{B} into $\mathcal{D}_{p-1}^{p}, 2<p<\infty$

There are function in $\mathcal{D}_{p-1}^{p}(p>2)$ whose sequence of zeros do not satisfy the Blaschke condition. So...

More precise results about the zero sequences of Bloch functions and \mathcal{D}_{p-1}^{p}-functions
Suppose $f \in \mathcal{B}$ with $f(0) \neq 0$ and let $\left\{a_{n}\right\}$ be the (ordered) sequence of the zeros of f. Then

$$
\prod_{n=1}^{N} \frac{1}{\left|a_{n}\right|}=\mathrm{O}\left((\log N)^{1 / 2}\right), \quad \text { as } N \rightarrow \infty
$$

This is sharp: There exists $f \in \mathcal{B}$ for which

Superposition operators from \mathcal{B} into $\mathcal{D}_{p-1}^{p}, 2<p<\infty$

There are function in $\mathcal{D}_{p-1}^{p}(p>2)$ whose sequence of zeros do not satisfy the Blaschke condition. So...

More precise results about the zero sequences of Bloch functions and \mathcal{D}_{p-1}^{p}-functions
Suppose $f \in \mathcal{B}$ with $f(0) \neq 0$ and let $\left\{a_{n}\right\}$ be the (ordered) sequence of the zeros of f. Then

$$
\prod_{n=1}^{N} \frac{1}{\left|a_{n}\right|}=\mathrm{O}\left((\log N)^{1 / 2}\right), \quad \text { as } N \rightarrow \infty
$$

This is sharp: There exists $f \in \mathcal{B}$ for which

$$
\prod_{n=1}^{N} \frac{1}{\left|a_{n}\right|} \neq \mathrm{o}\left((\log N)^{1 / 2}\right)
$$

For \mathcal{D}_{p-1}^{p}-functions we have the following result.

Suppose $2<p<\infty$ and $f \in \mathcal{B}$ with $f(0) \neq 0$. Let $\left\{a_{n}\right\}$ be the (ordered) sequence of the zeros of f. Then

$$
\prod_{n=1}^{N} \frac{1}{\left|a_{n}\right|}=O\left((\log N)^{\frac{1}{2}-\frac{1}{p}}\right), \quad \text { as } N \rightarrow \infty
$$

For \mathcal{D}_{p-1}^{p}-functions we have the following result.

Suppose $2<p<\infty$ and $f \in \mathcal{B}$ with $f(0) \neq 0$. Let $\left\{a_{n}\right\}$ be the (ordered) sequence of the zeros of f. Then

$$
\prod_{n=1}^{N} \frac{1}{\left|a_{n}\right|}=\mathrm{O}\left((\log N)^{\frac{1}{2}-\frac{1}{p}}\right), \quad \text { as } N \rightarrow \infty
$$

For \mathcal{D}_{p-1}^{p}-functions we have the following result.

Suppose $2<p<\infty$ and $f \in \mathcal{B}$ with $f(0) \neq 0$. Let $\left\{a_{n}\right\}$ be the (ordered) sequence of the zeros of f. Then

For \mathcal{D}_{p-1}^{p}-functions we have the following result.

Suppose $2<p<\infty$ and $f \in \mathcal{B}$ with $f(0) \neq 0$. Let $\left\{a_{n}\right\}$ be the (ordered) sequence of the zeros of f. Then

$$
\prod_{n=1}^{N} \frac{1}{\left|a_{n}\right|}=\mathrm{O}\left((\log N)^{\frac{1}{2}-\frac{1}{p}}\right), \quad \text { as } N \rightarrow \infty
$$

Suppose $2<p<\infty$, and $S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$.

Take $f \in \mathcal{B}$ with $f(0) \neq 0$ whose sequence of zeros $\left\{a_{n}\right\}$ satisfies

$$
\prod_{n=1}^{N} \frac{1}{\left|a_{n}\right|} \neq o\left((\log N)^{1 / 2}\right)
$$

Set $g(z)=\varphi \circ f(z)-\varphi(0)$.
If $g \equiv 0$ then φ is constant.
If $g \neq 0$ then $g \in \mathcal{D}_{p-1}^{p}$ and, hence, its sequence of zeros $\left\{z_{n}\right\}$ satisfies

But the $a_{n}^{\prime} s$ are zeros of $g \ldots$ contradiction.

Suppose $2<p<\infty$, and $S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$.
Take $f \in \mathcal{B}$ with $f(0) \neq 0$ whose sequence of zeros $\left\{a_{n}\right\}$ satisfies

$$
\prod_{n=1}^{N} \frac{1}{\left|a_{n}\right|} \neq o\left((\log N)^{1 / 2}\right) .
$$

Set $g(z)=\varphi \circ f(z)-\varphi(0)$.
If $g \equiv 0$ then φ is constant.
If $g \not \equiv 0$ then $g \in \mathcal{D}_{p-1}^{p}$ and, hence, its sequence of zeros $\left\{z_{n}\right\}$ satisfies

But the $a_{n}^{\prime} s$ are zeros of $g \ldots$ contradiction.

Suppose $2<p<\infty$, and $S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$.
Take $f \in \mathcal{B}$ with $f(0) \neq 0$ whose sequence of zeros $\left\{a_{n}\right\}$ satisfies

$$
\prod_{n=1}^{N} \frac{1}{\left|a_{n}\right|} \neq o\left((\log N)^{1 / 2}\right) .
$$

Set $g(z)=\varphi \circ f(z)-\varphi(0)$.
If $g \equiv 0$ then φ is constant.
If $g \neq 0$ then $g \in \mathcal{D}_{p-1}^{p}$ and, hence, its sequence of zeros $\left\{z_{n}\right\}$ satisfies

But the $a_{n}^{\prime} s$ are zeros of $g \ldots$ contradiction.

Suppose $2<p<\infty$, and $S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$.
Take $f \in \mathcal{B}$ with $f(0) \neq 0$ whose sequence of zeros $\left\{a_{n}\right\}$ satisfies

$$
\prod_{n=1}^{N} \frac{1}{\left|a_{n}\right|} \neq o\left((\log N)^{1 / 2}\right) .
$$

Set $g(z)=\varphi \circ f(z)-\varphi(0)$.
If $g \equiv 0$ then φ is constant.

But the $a_{n}^{\prime} s$ are zeros of $g \ldots$ contradiction.

Suppose $2<p<\infty$, and $S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$.
Take $f \in \mathcal{B}$ with $f(0) \neq 0$ whose sequence of zeros $\left\{a_{n}\right\}$ satisfies

$$
\prod_{n=1}^{N} \frac{1}{\left|a_{n}\right|} \neq o\left((\log N)^{1 / 2}\right) .
$$

Set $g(z)=\varphi \circ f(z)-\varphi(0)$.
If $g \equiv 0$ then φ is constant.
If $g \not \equiv 0$ then $g \in \mathcal{D}_{p-1}^{p}$ and, hence, its sequence of zeros $\left\{z_{n}\right\}$ satisfies

$$
\prod_{n=1}^{N} \frac{1}{\left|z_{n}\right|}=\mathrm{O}\left((\log N)^{\frac{1}{2}-\frac{1}{\rho}}\right)=\mathrm{o}\left((\log N)^{1 / 2}\right) .
$$

But the $a_{n}^{\prime} s$ are zeros of $g \ldots$ contradiction.

We have:

Theorem
Suppose $0<p<\infty$ and let φ be an entire function. Then the following are equivalent:

- $S_{\varphi}(\mathcal{B}) \subset H^{p}$.
- $S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$.
- φ is constant.

We have:

Theorem

Suppose $0<p<\infty$ and let φ be an entire function. Then the following are equivalent:

- $S_{\varphi}(\mathcal{B}) \subset H^{p}$.
- $S_{\varphi}(\mathcal{B}) \subset \mathcal{D}_{p-1}^{p}$.
- φ is constant.

Superposition operators from $B M O A$ into \mathcal{D}_{p-1}^{p},
 $2 \leq p<\infty$.

Recall: $S_{\varphi}(B M O A) \subset H^{p}$ if and only if φ is of order less than
one, or of order one and type zero.
Also true: $S_{\varphi}(B M O A) \subset A^{p}$ if and φ is of order less than one, or of order one and type zero.
Using these two results and the fact $H^{p} \subset \mathcal{D}_{p-1}^{p} \subset A^{2 p}$, it follows easily:

Theorem

Suppose $2 \leq p<\infty$ and let φ be an entire function. Then the following are equivalent:

- $S_{\varphi}(B M O A) \subset H^{P}$.
- $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p}$
- φ is of order less than one, or of order one and type zero.

Superposition operators from BMOA into \mathcal{D}_{p-1}^{p},
 $2 \leq p<\infty$.

Recall: $S_{\varphi}(B M O A) \subset H^{p}$ if and only if φ is of order less than
one, or of order one and type zero.
Also true: $S_{\varphi}(B M O A) \subset A^{p}$ if and φ is of order less than one, or of order one and type zero.
Using these two results and the fact $H^{p} \subset \mathcal{D}_{p-1}^{p} \subset A^{2 p}$, it follows easily:

Theorem

Suppose $2 \leq p<\infty$ and let φ be an entire function. Then the following are equivalent:

- $S_{\varphi}(B M O A) \subset H^{P}$.
- $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p}$
- φ is of order less than one, or of order one and type zero.

Superposition operators from BMOA into \mathcal{D}_{p-1}^{p}, $2 \leq p<\infty$.

Recall: $S_{\varphi}(B M O A) \subset H^{p}$ if and only if φ is of order less than one, or of order one and type zero.
Also true: $S_{\varphi}(B M O A) \subset A^{p}$ if and φ is of order less than one, or of order one and type zero.
Using these two results and the fact $H^{p} \subset D_{p-1}^{p} \subset A^{2 p}$, it follows easily:

Theorem

Suppose $2 \leq p<\infty$ and let φ be an entire function. Then the following are equivalent:

- $S_{\varphi}(B M O A) \subset H^{P}$.
- $S_{\varphi}(B M O A) \subset \mathcal{D}_{n-1}^{p}$
- φ is of order less than one, or of order one and type zero.

Superposition operators from BMOA into \mathcal{D}_{p-1}^{p}, $2 \leq p<\infty$.

Recall: $S_{\varphi}(B M O A) \subset H^{p}$ if and only if φ is of order less than one, or of order one and type zero.
Also true: $S_{\varphi}(B M O A) \subset A^{\rho}$ if and φ is of order less than one, or
of order one and type zero.
Using these two results and the fact $H^{p} \subset \mathcal{D}_{p-1}^{p} \subset A^{2 p}$, it follows easily:

Theorem
Suppose $2 \leq p<\infty$ and let φ be an entire function. Then the following are equivalent:

- $S_{\varphi}(B M O A) \subset H^{P}$.
- $S_{\varphi}(B M O A) \subset D_{p-}^{p}$
- φ is of order less than one, or of order one and type zero.

Superposition operators from BMOA into \mathcal{D}_{p-1}^{p},
 $2 \leq p<\infty$.

Recall: $S_{\varphi}(B M O A) \subset H^{p}$ if and only if φ is of order less than one, or of order one and type zero.
Also true: $S_{\varphi}(B M O A) \subset A^{p}$ if and φ is of order less than one, or of order one and type zero.
Using these two results and the fact $H^{p} \subset D_{p-1}^{p} \subset A^{2 p}$, it follows easily:

```
Theorem
Suppose 2 \leq p<\infty and let \varphi be an entire function. Then the
following are equivalent:
    - S}(BMOA)\subset\mp@subsup{H}{}{P
    - S\varphi
    - \varphi is of order less than one, or of order one and type zero.
```


Superposition operators from BMOA into \mathcal{D}_{p-1}^{p},
 $2 \leq p<\infty$.

Recall: $S_{\varphi}(B M O A) \subset H^{p}$ if and only if φ is of order less than one, or of order one and type zero.
Also true: $S_{\varphi}(B M O A) \subset A^{p}$ if and φ is of order less than one, or of order one and type zero.
Using these two results and the fact $H^{p} \subset \mathcal{D}_{p-1}^{p} \subset A^{2 p}$, it follows easily:

Superposition operators from BMOA into \mathcal{D}_{p-1}^{p},
$2 \leq p<\infty$.
Recall: $S_{\varphi}(B M O A) \subset H^{p}$ if and only if φ is of order less than one, or of order one and type zero.
Also true: $S_{\varphi}(B M O A) \subset A^{p}$ if and φ is of order less than one, or of order one and type zero.
Using these two results and the fact $H^{p} \subset \mathcal{D}_{p-1}^{p} \subset A^{2 p}$, it follows easily:

Theorem

Suppose $2 \leq p<\infty$ and let φ be an entire function. Then the following are equivalent:

- $S_{\varphi}(B M O A) \subset H^{p}$.
- $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p}$.
- φ is of order less than one, or of order one and type zero.

Superposition operators from BMOA into \mathcal{D}_{p-1}^{p}, $0<p<2$

For these values of p the φ 's for which $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p}$ do not coincide with those for which $S_{\varphi}(B M O A) \subset H^{p}$. We have:

Theorem

Suppose that $0<p<2$ and let φ be an entire function. Then

$$
S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p} \Leftrightarrow \varphi \text { constant. }
$$

Superposition operators from BMOA into \mathcal{D}_{p-1}^{p}, $0<p<2$

For these values of p the φ 's for which $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p}$ do not coincide with those for which $S_{\varphi}(B M O A) \subset H^{p}$.
We have:
Theorem
Suppose that $0<p<2$ and let φ be an entire function. Then
$S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p} \Leftrightarrow \varphi$ constant.

Superposition operators from BMOA into \mathcal{D}_{p-1}^{p}, $0<p<2$

For these values of p the φ 's for which $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p}$ do not coincide with those for which $S_{\varphi}(B M O A) \subset H^{p}$. We have:

Theorem
Suppose that $0<p<2$ and let φ be an entire function. Then
$S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p} \Leftrightarrow \varphi$ constant.

Superposition operators from BMOA into \mathcal{D}_{p-1}^{p}, $0<p<2$

For these values of p the φ 's for which $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p}$ do not coincide with those for which $S_{\varphi}(B M O A) \subset H^{p}$.
We have:

Theorem

Suppose that $0<p<2$ and let φ be an entire function. Then $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p} \Leftrightarrow \varphi$ constant.

Superposition operators from BMOA into \mathcal{D}_{p-1}^{p}, $0<p<2$

For these values of p the φ 's for which $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p}$ do not coincide with those for which $S_{\varphi}(B M O A) \subset H^{p}$.
We have:

Theorem

Suppose that $0<p<2$ and let φ be an entire function. Then

$$
S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p} \Leftrightarrow \varphi \text { constant. }
$$

Proof

Suppose $0<p<2, \varphi$ is non-constant, and $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p}$.

 Take $f \in H^{\infty} \subset B M O A$ such that$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r=\infty, \quad \text { for a. e. } \theta
$$

$\varphi^{\prime} \not \equiv 0$ and then

$$
\varphi^{\prime} \circ f \in H^{\infty} \text { and } \varphi^{\prime} \circ f \not \equiv 0
$$

It follows that $\varphi^{\prime} \circ f$ has a non-zero radial limit almost everywhwere.

Proof

Suppose $0<p<2, \varphi$ is non-constant, and $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p}$.

$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r=\infty, \quad \text { for a. e. } \theta .
$$

$\varphi^{\prime} \not \equiv 0$ and then

 It follows that $\varphi^{\prime} \circ f$ has a non-zero radial limit almost

 everywhwere.Suppose $0<p<2, \varphi$ is non-constant, and $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p}$. Take $f \in H^{\infty} \subset B M O A$ such that

$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r=\infty, \quad \text { for a. e. } \theta .
$$

$\varphi^{\prime} \not \equiv 0$ and then

$$
\varphi^{\prime} \circ f \in H^{\infty} \text { and } \varphi^{\prime} \circ f \not \equiv 0
$$

It follows that $\varphi^{\prime} \circ f$ has a non-zero radial limit almost everywhwere.

Suppose $0<p<2, \varphi$ is non-constant, and $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p}$. Take $f \in H^{\infty} \subset B M O A$ such that

$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r=\infty, \quad \text { for a. e. } \theta .
$$

$\varphi^{\prime} \not \equiv 0$ and then

$$
\varphi^{\prime} \circ f \in H^{\infty} \text { and } \varphi^{\prime} \circ f \not \equiv 0
$$

It follows that $\varphi^{\prime} \circ f$ has a non-zero radial limit almost everywhwere.

Suppose $0<p<2, \varphi$ is non-constant, and $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p}$. Take $f \in H^{\infty} \subset B M O A$ such that

$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r=\infty, \quad \text { for a. e. } \theta .
$$

$\varphi^{\prime} \not \equiv 0$ and then

$$
\varphi^{\prime} \circ f \in H^{\infty} \text { and } \varphi^{\prime} \circ f \not \equiv 0 .
$$

It follows that φ^{\prime} of has a non-zero radial limit almost everywhwere.

Suppose $0<p<2, \varphi$ is non-constant, and $S_{\varphi}(B M O A) \subset \mathcal{D}_{p-1}^{p}$. Take $f \in H^{\infty} \subset B M O A$ such that

$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r=\infty, \quad \text { for a. e. } \theta .
$$

$\varphi^{\prime} \not \equiv 0$ and then

$$
\varphi^{\prime} \circ f \in H^{\infty} \text { and } \varphi^{\prime} \circ f \not \equiv 0 .
$$

It follows that $\varphi^{\prime} \circ f$ has a non-zero radial limit almost everywhwere.
$S_{\varphi}(f) \in \mathcal{D}_{p-1}^{p}$, that is,

$$
\int_{\mathbb{D}}(1-|z|)^{p-1}\left|f^{\prime}(z)\right|^{p}\left|\varphi^{\prime}(f(z))\right|^{p} d A(z)<\infty
$$

Equivalently,

$$
\int_{0}^{2 \pi} \int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p}\left|\varphi^{\prime}\left(f\left(r e^{i \theta}\right)\right)\right|^{p} d r d \theta<\infty
$$

This implies that

$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p}\left|\varphi^{\prime}\left(f\left(r e^{i \theta}\right)\right)\right|^{p} d r<\infty, \quad \text { for a. e. } \theta \text {. }
$$

But, since $\varphi^{\prime} \circ f$ has a non-zero radial limit almost everywhere, this implies that

$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r<\infty, \quad \text { for a. e. } \theta
$$

Contradiction.
$S_{\varphi}(f) \in \mathcal{D}_{p-1}^{p}$, that is,

$$
\int_{\mathbb{D}}(1-|z|)^{p-1}\left|f^{\prime}(z)\right|^{p}\left|\varphi^{\prime}(f(z))\right|^{p} d A(z)<\infty .
$$

Equivalently,

$$
\int_{0}^{2 \pi} \int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} \mid \varphi^{\prime}\left(f\left(r e^{i \theta}\right)\right)^{p} d r d \theta<\infty
$$

This implies that

$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p}\left|\varphi^{\prime}\left(f\left(r e^{i \theta}\right)\right)\right|^{p} d r<\infty, \quad \text { for a. e. } \theta .
$$

But, since $\varphi^{\prime} \circ f$ has a non-zero radial limit almost everywhere, this implies that

$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r<\infty, \quad \text { for a. e. } \theta
$$

$S_{\varphi}(f) \in \mathcal{D}_{p-1}^{p}$, that is,

$$
\int_{\mathbb{D}}(1-|z|)^{p-1}\left|f^{\prime}(z)\right|^{p}\left|\varphi^{\prime}(f(z))\right|^{p} d A(z)<\infty .
$$

Equivalently,

This implies that

But, since $\varphi^{\prime} \circ f$ has a non-zero radial limit almost everywhere, this implies that

$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r<\infty, \quad \text { for a. e. } \theta
$$

$S_{\varphi}(f) \in \mathcal{D}_{p-1}^{p}$, that is,

$$
\int_{\mathbb{D}}(1-|z|)^{p-1}\left|f^{\prime}(z)\right|^{p}\left|\varphi^{\prime}(f(z))\right|^{p} d A(z)<\infty .
$$

Equivalently,

$$
\int_{0}^{2 \pi} \int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p}\left|\varphi^{\prime}\left(f\left(r e^{i \theta}\right)\right)\right|^{p} d r d \theta<\infty .
$$

This implies that

But, since $\varphi^{\prime} \circ f$ has a non-zero radial limit almost everywhere, this implies that
$S_{\varphi}(f) \in \mathcal{D}_{p-1}^{p}$, that is,

$$
\int_{\mathbb{D}}(1-|z|)^{p-1}\left|f^{\prime}(z)\right|^{p}\left|\varphi^{\prime}(f(z))\right|^{p} d A(z)<\infty .
$$

Equivalently,

$$
\int_{0}^{2 \pi} \int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p}\left|\varphi^{\prime}\left(f\left(r e^{i \theta}\right)\right)\right|^{p} d r d \theta<\infty .
$$

This implies that

$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p}\left|\varphi^{\prime}\left(f\left(r e^{i \theta}\right)\right)\right|^{p} d r<\infty, \quad \text { for a. e. } \theta .
$$

But, since φ^{\prime} of has a non-zero radial limit almost everywhere, this implies that
$S_{\varphi}(f) \in \mathcal{D}_{p-1}^{p}$, that is,

$$
\int_{\mathbb{D}}(1-|z|)^{p-1}\left|f^{\prime}(z)\right|^{p}\left|\varphi^{\prime}(f(z))\right|^{p} d A(z)<\infty .
$$

Equivalently,

$$
\int_{0}^{2 \pi} \int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p}\left|\varphi^{\prime}\left(f\left(r e^{i \theta}\right)\right)\right|^{p} d r d \theta<\infty
$$

This implies that

$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p}\left|\varphi^{\prime}\left(f\left(r e^{i \theta}\right)\right)\right|^{p} d r<\infty, \quad \text { for a. e. } \theta .
$$

But, since $\varphi^{\prime} \circ f$ has a non-zero radial limit almost everywhere, this implies that
$S_{\varphi}(f) \in \mathcal{D}_{p-1}^{p}$, that is,

$$
\int_{\mathbb{D}}(1-|z|)^{p-1}\left|f^{\prime}(z)\right|^{p}\left|\varphi^{\prime}(f(z))\right|^{p} d A(z)<\infty .
$$

Equivalently,

$$
\int_{0}^{2 \pi} \int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p}\left|\varphi^{\prime}\left(f\left(r e^{i \theta}\right)\right)\right|^{p} d r d \theta<\infty .
$$

This implies that

$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p}\left|\varphi^{\prime}\left(f\left(r e^{i \theta}\right)\right)\right|^{p} d r<\infty, \quad \text { for a. e. } \theta .
$$

But, since $\varphi^{\prime} \circ f$ has a non-zero radial limit almost everywhere, this implies that

$$
\int_{0}^{1}(1-r)^{p-1}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r<\infty, \quad \text { for a. e. } \theta .
$$

Contradiction.

嗇 D．Girela and M．A．Márquez，Superposition operators between Q_{p} spaces and Hardy spaces，J．Math．Anal．Appl． 364 （2010），no．2，463－472．

R－P．Galanopoulos，D．Girela and M．A．Márquez， Superposition operators，Hardy spaces，and Dirichlet type spaces，J．Math．Anal．Appl． 463 （2018），no．2，659－680．
固 S．Domínguez and D．Girela，Sequences of zeros of analytic function spaces and weighted superposition operators，Monatsh．Math． 190 （2019），n．4，725－734．
S．Domínguez and D．Girela，A radial integrability result concerning bounded functions in analytic Besov spaces with applications，Results in Mathematics 75，Article number 67 （2020）．

䡒 S．Domínguez and D．Girela，Superposition operators between mixed norm spaces of analytic functions， Mediterranean J．Math． 18 （2021），no．1，Article n． 18.

THANK YOU!

