On the theory of functions of omega-bounded type

A. M. Jerbashian

Institute of Mathematics
National Academy of Sciences of Armenia

Early results

Biberbach, 1914, approximation by rational functions in the Diichlet space

$$
\iint_{|z|<1}\left|f^{\prime}(z)\right|^{2} d \sigma(z)<+\infty
$$

of holomorphic in the unit disc functions.
W. Wirtinger, 1932, orthogonal projection and representation by the square of the Cauchy kernel in the Hilbert space

$$
\iint_{|z|<1}|f(z)|^{2} d \sigma(z)<+\infty,
$$

of holomorphic in the unit disc functions.

Pages 151-152 of the Walsh's book

R. Nevanlinna's book, for $0<\alpha<+\infty, 1936$

$$
\begin{aligned}
&+\infty>\int_{0}^{1}(1-r)^{\alpha-1} T(r, f) d r= \sup _{0<x<1} \int_{0}^{x}(x-r)^{\alpha-1} T(x, f) d r \\
&= \sup _{0<x<1} \int_{0}^{x}(x-r)^{\alpha-1}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(x e^{i \vartheta}\right)\right| d \vartheta\right\} d r \\
&+\sup _{0<x<1} \int_{0}^{x}(x-r)^{\alpha-1} N(r, f) d r \\
& \Longrightarrow \sum_{k}\left(1-\left|a_{k}\right|\right)^{1+\alpha}<+\infty, \quad \sum_{n}\left(1-\left|b_{n}\right|\right)^{1+\alpha}<+\infty
\end{aligned}
$$

Theorem III. If a function $F(z)$ is meromorphic in $|z|<1$ and

$$
(\alpha+1) \int_{0}^{1}(1-\rho)^{\alpha} T(\rho) d \rho<+\infty \quad(\alpha>-1)
$$

then this function is representable in the following canonical form:

$$
F(z)=K z^{\lambda} \frac{\pi_{\alpha}\left(z,\left\{a_{\mu}\right\}\right)}{\pi_{\alpha}\left(z,\left\{b_{\nu}\right\}\right)} \exp \left\{\frac{\alpha+1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left(1-\rho^{2}\right)^{\alpha} \frac{\lg \left|F\left(\rho e^{i \vartheta}\right)\right|}{\left(1-z \rho e^{-i \vartheta}\right)^{\alpha+2}} \rho d \rho d \vartheta\right\},
$$

where $\pi_{\alpha}\left(z,\left\{a_{\mu}\right\}\right)$ and $\pi_{\alpha}\left(z,\left\{b_{\nu}\right\}\right)$ are defined by (8) and

$$
K=\bar{C}_{\lambda}^{-1} \exp \left\{4 \lambda(\alpha+1) \int_{0}^{1}\left(1-\rho^{2}\right)^{\alpha} \lg \frac{1}{\rho} \rho d \rho d \vartheta\right\} .
$$

1. We define $B_{\delta}(\alpha)(\delta>0, \alpha>-1)$ as the set of all those functions $f(z)$ meromorphic in $|z|<1$, for which the integral

$$
\begin{equation*}
\frac{\alpha+1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left(1-\rho^{2}\right)^{\alpha}\left|f\left(\rho e^{i \vartheta}\right)\right|^{\delta} \rho d \rho d \vartheta \tag{1}
\end{equation*}
$$

exists.
Theorem I. If $f(z) \in B_{\delta}(\alpha)(\delta \geq 1)$, then the following integral representations are true in $|z|<1$:

$$
\begin{align*}
& f(z)=\frac{\alpha+1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left(1-\rho^{2}\right)^{\alpha} \frac{f\left(\rho e^{i \vartheta}\right)}{\left(1-z \rho e^{-i \vartheta}\right)^{\alpha+2}} \rho d \rho d \vartheta, \tag{2}\\
& f(z)=-\overline{f(0)}+\frac{2(\alpha+1)}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left(1-\rho^{2}\right)^{\alpha} \frac{\operatorname{Re} f\left(\rho e^{i \vartheta}\right)}{\left(1-z \rho e^{-i \vartheta}\right)^{\alpha+2}} \rho d \rho d \vartheta . \tag{1}
\end{align*}
$$

Applying the operator immediately to the function

Fourier transform \Longrightarrow Riemann-Liouville integrodifferentation

$$
\begin{gathered}
\left.D^{-\alpha} \log |f(z)| \equiv \frac{1}{\Gamma(\alpha)} \int_{0}^{1}(1-t)^{\alpha-1} \log \right\rvert\, f(t z \mid d t, \quad 0<\text { alpha }<+\infty \\
D^{\alpha} \log |f(z)|
\end{gathered}
$$

This leads to the M.M.Djrbashian factorization theory of the classes N_{α} of functions meromorphic in the unit disc.

While the change of $(1-t)^{\text {alpha-1 }}$ to a wide class of ω functional parametars in $[0,1]$, which can have any rate of decrease near 1 and the operators which can be simply written in the form

$$
L_{\omega} \log |f(z)| \equiv-\int_{0}^{1} \log |f(t z)| d \omega(t)
$$

leads to his theory of $N\{\omega\}$ classes, the union of which covers the whole set of functions meromorphic in $|z|<1$.

Delta-subharmonic extension of the M.M.Djrbashian factorization theory and a similar theory in the half-plane

A passage to the more general delta subharmonic functions $u(z)$ instead of $\log |f(z)|$ leads me to a simple connection of M.M.Djrbashian's characteristic with Nevanlinna's one:

$$
T_{\omega}(u, r)=T\left(L_{\omega} u, r\right), \quad 0<r<+\infty,
$$

and construct an a theory of Riesz type representations of some classes N_{ω}, the union of which covers the whole set of functions delta-subharmonic in $|z|<1$.

A similar theory was constructed, where the Fourier-Taylor series is replaced by the Laplace transform and the operator

$$
L_{\omega} u(z) \equiv \int_{0}^{+\infty} u(z+i t) d \omega(t)
$$

is used
A_{ω}^{p} and N_{ω}° in the disc, in the half-plane and in the whole finite complex plane

Applying the operator to the integral means of the p-th degree of the integral means of a holomorphic function leads to some theories in the disc and in the half-plane, where:

- The representations of functions are given by the M.M.Djrbashian omega special omega-kernels.
- These representations generate the orthogonal projection for $p=2$ and an isomorphism for any other p.
- For $p=2$ an explicit isometry formula is found with the Hardy space.
- Riesz type representations are found for delta-subharmonic functions, the Nevanlinna and Tsuji characteristics of which can have any growth rate.

Banach spaces of functions delta-subharmonic in the disc and in the half-plane

I shall bring here only one result in the disc. The results in the half-plain are similar.

Let $\omega \in \Omega_{B}(\mathbb{D})$ and $0<d<1$. Then $\overline{\mathcal{D}}_{\omega, d}$ is the set of those delta-subharmonic in \mathbb{D} functions u with associated charges v, the supports of which are located in the ring $\{\zeta: d \leq|\zeta|<1\}$ and

$$
\begin{aligned}
\|u\|_{\omega}= & \sup _{0<r<1} \frac{1}{2 \pi}\left\{\int_{0}^{2 \pi}\left[L_{\omega} u\left(r e^{i \vartheta}\right)\right]^{2} d \vartheta\right\}^{1 / 2} \\
& +\iint_{\mathbb{D}}\left(\int_{0}^{1-|\zeta|} \omega(|\zeta|(1-t)) \frac{d t}{\sqrt{t}}\right)|d v(\zeta)|<+\infty .
\end{aligned}
$$

Let $\omega \in \Omega_{B}(\mathbb{D})$ and $d \in(0,1)$. Then $\widetilde{\mathcal{D}}_{\omega, d}$ is a Banach space

Theorem 19. The class H_{2}^{\prime} which is the closed extension of the set $1, z, z^{2}, \ldots$ on $C^{\prime}:|z|<1$ is essentially the set of functions of class L^{2} on C^{\prime} analytic in C^{\prime}, or in other words is essentially the class of functions represented by (57).

The analogue of the latter part of Theorem 15 is
Theorem 20. Let $F(z)$ be of class L^{2} on C^{\prime}. The essentially unique function $f(z)$ of class H_{2}^{\prime} such that

$$
\iint_{C^{\prime}}|F(z)-f(z)|^{2} d S
$$

is least is given by

$$
\begin{equation*}
f(z) \equiv \frac{1}{\pi} \iint_{C^{\prime}} F(\zeta) \frac{d S}{(1-\bar{\zeta} z)^{2}}, \quad|z|<1 \tag{58}
\end{equation*}
$$

The formal development of $F(z)$ on C^{\prime} in terms of the functions z^{k} is

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k} z^{k}, \quad a_{k}=\frac{k+1}{\pi} \iint_{C^{\prime}} F(\zeta) \bar{\zeta}^{k} d S \tag{59}
\end{equation*}
$$

this series converges to $f(z)$ of class H_{2}^{\prime} in the mean on C^{\prime}, hence ($\$ 5.8$, Theorem 17) converges to $f(z)$ uniformly on any closed set interior to C^{\prime}. Interior to C^{\prime}, the function represented by (59) is

$$
f(z) \equiv \frac{1}{\pi} \iint_{C^{\prime}} F(\zeta)\left[1+2 \bar{\zeta} z+3 \bar{\zeta}^{2} z^{2}+\cdots\right] d S, \quad|z|<1
$$

for the series in square brackets converges uniformly for $|\zeta| \leqq 1$ when z is fixed. This equation for $f(z)$ can be rewritten in form (58). Of course if $F(z)$ is an I arbitrary function of class H_{2}^{\prime}, then (58) is valid with $f(z) \equiv F(z)$.

Theorem 20 is due to Wirtinger [1932], by a quite different method.
By the method of proof of Theorem 17 the reader may prove
Theorem 21. Let $n(z)$ be the square of the modulus of a function $N(z)$ analytic, bounded, and bounded from zero on $C^{\prime}:|z|<1$. Let the function $F(z)$ be of class L^{2} on C^{\prime}. The essentially unique function $f(z)$ of class H_{2}^{\prime} such that

$$
\begin{equation*}
\iint_{C^{\prime}} n(z)|F(z)-f(z)|^{2} d S \tag{60}
\end{equation*}
$$

is least is given by

$$
f(z) \equiv \frac{1}{\pi N(z)} \iint_{C^{\prime}} \frac{F(\zeta) N(\zeta) d S}{(1-\zeta z)^{2}}, \quad|z|<1
$$

If auxiliary conditions (53) are prescribed in the situation of Theorem 21, the determination of $f(z)$ is more difficult. However, if ail of the points β_{i} coincide
at the origin, we shall indicate that a solution of the problem lies at hand. In the case $n(z) \equiv 1$ let $p(z)$ denote the polynomial of degree $\nu-1$ which satisfies the auxiliary conditions. The problem of determining $f(z)$ so as to minimize (60) is equivalent to that of determining the function $f_{1}(z)$ of class H_{2}^{\prime} such that

$$
\iint_{C^{\prime}}\left|F(z)-p(z)-z^{v} f_{1}(z)\right|^{2} d S
$$

is least. The formal development of $F(z)-p(z)$ in terms of the functions $z^{\nu}, z^{\nu+1}, z^{\nu+2}, \cdots$ orthogonal on C^{\prime} is

$$
\sum_{k=\nu}^{\infty} a_{k} z^{k}, \quad a_{k}=\frac{k+1}{\pi} \iint_{C^{\prime}}[F(\zeta)-p(\zeta)] \bar{\zeta}^{k} d S
$$

whence as with (59)

$$
z^{\nu} f_{1}(z) \equiv \frac{1}{\pi} \iint_{C^{\prime}}[F(\zeta)-p(\zeta)] \frac{(\nu+1) \bar{\zeta}^{\nu} z^{\nu}-\nu \bar{\zeta}^{\nu+1} z^{\nu+1}}{(1-\bar{\zeta} z)^{2}} d S
$$

the minimizing function $f(z)$ is $p(z)+z^{\nu} f_{1}(z)$. The introduction of a norm function as in Theorem 21 presents no difficulty.

Theorems 20 and 21 and the remark just made extend to more general regions by the use of conformal mapping; compare §11.4.

The study of extremal problems and their solution by methods of approximation is to be resumed in $\$ \$ 11.3$ and A 3.

Of course one may study approximation in a multiply connected region (compare $\S \S 1.6$ and 1.7) in the sense of least squares, by orthogonalizing a suitable set of rational functions; see Ghika [1936] and Bergman [1950].

