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Abstract

A recently developed iterative method for estimating the solution of ordinary
and fractional boundary–value problems is described. The strategy is based
on the construction of a tailored integral operator described in terms of the
Green’s function, which corresponds to the highest order linear derivative
term. After then, the integral operator is subjected to a fixed–point scheme
like Picard’s, Mann’s, or Ishikawa’s. The convergence of the scheme is
assessed. Numerical tests are used to assess the applicability and correctness
of the approach.
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Problem Statement

Problem Statement

The aim is to present fixed point iterative schemes for the solution of the
following DE/FDE:

L[y ] + N[y ] = f (t, y),

where L[y ] is a linear operator in y , N[y ] is a nonlinear operator in y , and
f (t, y) is a linear or nonlinear function in y . The equation is supplemented
with either ICs or BCs. An example of such a class is the FBVP:

y (α)(t) = f (t, y(t)) ,

y(0) = a, y(1) = b,

where 0 ≤ t ≤ 1, 1 < α ≤ 2.
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Iterative Method Overview of Green’s function

Overview of Green’s function

Consider the class of nth order linear differential equations

L[u] ≡ a1(t) u
(n)(t) + ... + an−1(t) u

′(t) + an(t) u(t) = f (t),

on [a,b] and complimented with n boundary conditions (BCs):

B1[u(t)] = α1, B2[u(t)] = α2, ..., Bn[u(t)] = αn.

The Green’s function is defined to be the solution for the equation:

−L[G (t|s)] = δ(t − s).

where δ is the Kronecker Delta, and subject to the corresponding
”homogeneous” boundary conditions.
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Iterative Method Overview of Green’s function

For t ̸= s, we need to solve L[G (t|s)] = 0, therefore

G (t|s) =

{
c1u1 + c2u2 + c3u3 + ...+ cnun, a < x < s

d1u1 + d2u2 + d3u3 + ...+ dnun, s < x < b
,

where u1, u2, ..., un are linearly independent solutions of L[u] = 0.
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Iterative Method Overview of Green’s function

The constants are to be found using the properties:

A. G satisfies the n homogeneous BCs:

B1[G (t|s)] = B2[G (t|s)] = ... = Bn[G (t|s)] = 0,

B. Continuity of G , G ′, G ′′, ...,G (n−2) at t = s. This results in the n − 1
equations:



c1u1(s) + c2u2(s) + ...+ cnun(s) = d1u1(s) + d2u2(s) + ...+ dnun(s),

c1u
′
1(s) + c2u

′
2(s) + ...+ cnu

′
n(s) = d1u

′
1(s) + d2u

′
2(s) + ...+ dnu

′
n(s),

...

c1u
(n−2)
1 (s) + ...+ cnu

(n−2)
n (s) = d1u

(n−2)
1 (s) + ...+ dnu

(n−2)
n (s).

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green’s functions for the solution of DEs: An iterative strategyJuly 15, 2023 8 / 54



Iterative Method Overview of Green’s function

C. Jump discontinuity of G (n−1) at t = s:

d1u
(n−1)
1 (s) + ...+ dnu

(n−1)
n (s)− c1u

(n−1)
1 (s)− ...− cnu

(n−1)
n (s) =

1

an(s)
.
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Iterative Method Overview of Green’s function

Definition

The Caputo fractional derivative of order m − 1 < α ≤ m, of a function
g(t) , is defined as

g (α)(t) = Jm−αg (m)(t),

when

Jαg(t) =
1

Γ(α)

∫ t

0
(t − s)α−1g(s) ds, α > 0,

for m ∈ N, t > 0 and g ∈ Cm
−1.

Lemma

The Laplace transform of Caputo fractional derivative for
m − 1 < α ≤ m,m ∈ N, can be determined in the form of:

L[g (α)(x)] =
smG (s)− sm−1g(0)− sm−2g ′(0)− ...− g (m−1)(0)

sm−α
.
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Iterative Method Overview of Green’s function

Example

Consider the FBVP:
y (α)(t) = f (t, y(t)) ,

y(0) = a, y(1) = b.

Here 0 ≤ t ≤ 1 and 1 < α ≤ 2.

The corresponding Green’s function for this FBVP satisfies:{
−DαG (t, x) = δ(t − x),

G (0, x) = 0, G (1, x) = 0.

Note that the Green’s function satisfies the corresponding homogenous
boundary conditions.
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Iterative Method Overview of Green’s function

To obtain the Green’s function explicitly, operate with Laplace transform.

s2L[G (t, x)]− sG (0, x)− Gt(0, x)

s2−α
= −e−sx .

Assume Gt(0, x) = K . Then

L[G (t, x)] =
K

s2
− 1

sα
e−sx .

Laplace inverse yields

G (t, x) = Kt − 1

Γ(α)
(t − x)α−1 U(t − x),

where U is the Unit Step function.
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Iterative Method Overview of Green’s function

The constant K is found using the BC, G (1, x) = 0. We have

G (t, x) =
1

Γ(α)
(1− x)α−1 t − 1

Γ(α)
(t − x)α−1 U(t − x).

Therefore

G (t, x) =


t(1− x)α−1 − (t − x)α−1

Γ(α)
, 0 ≤ x < t ≤ 1

t(1− x)α−1

Γ(α)
, 0 ≤ t < x ≤ 1

.
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Iterative Method Overview of Green’s function

Example

Consider the FBVP:

y (α)(t)− λ2y(t) = f (t, y(t)) ,

y(0) = a, y(1) = b.

Here 0 ≤ t ≤ 1 and 1 < α ≤ 2.

The corresponding Green’s function for this FBVP satisfies:

{
−DαG (t, x) + λ2G (t, x) = δ(t − x),

G (0, x) = 0, G (1, x) = 0.
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Iterative Method Overview of Green’s function

The Green’s function for general value of α, where 1 < α ≤ 2, is given by

G(t, x) =



t(1 − x)α−1 Eα,α

(
λ2(1 − x)α

)
Eα,2

(
λ2tα

)
Eα,2

(
λ2

) − (t − x)α−1 Eα,α

(
λ
2(t − x)α

)
0 ≤ t < x,

t(1 − x)α−1 Eα,α

(
λ2(1 − x)α

)
Eα,2

(
λ2tα

)
Eα,2

(
λ2

) , x < t ≤ 1

.

Here Ea,b is the Mittag–Leffler function.
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Iterative Method Overview of Green’s function

The Green’s function for the case α = 2 reduces to:

G (t, x) =


sinh(λ(1− x))

λ sinh(λ)
sinh(λt), 0 ≤ t < x

sinh(λ(1− t))

λ sinh(λ)
sinh(λx), x < t ≤ 1

.
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Iterative Method Overview of Green’s function

Example

Consider the FIVP:

y (α)(t) = f (t, y(t), y ′(t)) ,

y(0) = a, y ′(0) = b, y ′′(0) = b.

Here 0 ≤ t ≤ 1 and 2 < α ≤ 3.

The corresponding Green’s function for this FIVP satisfies:{
−DαG (t, x) = δ(t − x),

G (0, x) = 0, Gt(0, x) = 0, Gtt(0, x) = 0.

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green’s functions for the solution of DEs: An iterative strategyJuly 15, 2023 17 / 54



Iterative Method Overview of fixed–point iterative procedures

Overview of fixed–point iterative procedures

Let X be a normed linear space and T : X → X a given operator. Next,
we list the most well–known fixed–point iterative schemes.

I. Picard’s Iteration: y0 ∈ X and {yn}∞n=0 defined by:

yn+1 = T [yn], n = 0, 1, 2, ....

II. Krasnoselkij’s Iteration: y0 ∈ X , γ ∈ [0, 1], {yn}∞n=0 defined by

yn+1 = (1− γ)yn + γ T [yn], n = 0, 1, 2, ....
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Iterative Method Overview of fixed–point iterative procedures

III. Mann’s Iteration: y0 ∈ X , {αn} ⊂ [0, 1], {yn}∞n=0 defined by:

yn+1 = (1− αn)yn + αn T [yn], n = 0, 1, 2, ....

IV. Ishikawa’s Iteration: {yn}∞n=0 is defined by:

{
yn+1 = (1− αn)yn + αn T [zn],

zn = (1− βn)yn + βn T [yn], n = 0, 1, 2, ...,

where {αn} and {βn} ⊂ [0, 1], and y0 ∈ X is arbitrary.
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Iterative Method Method description

Method description

We present the iterative method for the FBVP:

y (α)(t) = f (t, y(t)) ,

y(0) = a, y(1) = b.

Here 0 ≤ t ≤ 1, 1 < α ≤ 2. Note that

yp(t) =

∫ 1

0
G (t, x) f (x , yp(x)) dx ,

where yp is a particular solution for the equation that satisfies the
corresponding homogeneous boundary conditions.
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Iterative Method Method description

An important note is that for the nonhomogeneous BCs, the particular
solution contains terms outside the integral:

yp(t) =

∫ b

a
G (t, x)f (x) dx + b G (t, 1) + a

∂G

∂x
(t, 0).

This latter term outside the integral will not be visible in the iterative
scheme, as it is set to the value of the first iteration, i.e. y0 is chosen as:

y0(t) = b G (t, 1) + a
∂G

∂x
(t, 0).

This solution satisfies the nonhomogeneous boundary conditions.
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Iterative Method Method description

Define the following integral operator:

L[y ] ≡
∫ 1

0
G (t, x) y (α)(x) dx .

Rewrite the equation as:

L[y ] =

∫ 1

0

G (t, x)
[
y (α)(x)− f (x , y(x))

]
dx +

∫ 1

0

G (t, x) f (x , y(x)) dx .

The equation reduces to:

L[yp] =

∫ 1

0
G (t, x)

[
y
(α)
p (x)− f (x , yp(x))

]
dx + yp.

For convenience of notation let yp be y .
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Iterative Method Method description

Applying Picard’s iteration scheme to the operator L[y ], namely

yn+1 = L[yn], n = 0, 1, 2, ...,

we obtain the following iterative procedure:

yn+1 = yn +

∫ 1

0
G (t, x)

[
y
(α)
n (x)− f (x , yn(x))

]
dx .
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Iterative Method Method description

Other well–known iterative procedures can be applied to the operator L[y ].
For instance, applying Mann’s procedure:

yn+1 = (1− βn)yn + βnL[yn], ∀n ≥ 0,

to L[y ] yields the itertive scheme:

yn+1 = yn + βn

∫ 1

0
G (t, x)

[
y (α)(x)− f (x , y(x))

]
dx .

Here βn is a sequence between 0 and 1. Mann’s iterative procedure can be
used in some cases when Picard’s scheme diverges.
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Iterative Method Method description

If the sequence βn is chosen correctly, the rate of convergence of the scheme
will be accelerated and optimal values for βn are obtained. One approach to
find optimal values of βn is by minimizing the L2[a, b]–norm of the residual
error, Rn(x ;βn), of the n

th iteration yn. For the first iterate, y1, the L
2 norm

of the residual error R1(x ;β1) is:

∥R1(x ;β1)∥2L2 =

∫ b

a
|R1(x ;β1)|2dx ,

needs to minimized for β1. The other values of βn can be acquired in a
similar way.
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Iterative Method Method description

The Mann’s iterative scheme for the FBVP and subject to the BCs is
given as follows:

yn+1 = yn + βn

∫ t

0

[
t (1− x)α−1 − (t − x)α−1

Γ(α)

] [
y (α)
n (x) − f (x , yn(x))

]
dx

+ βn

∫ 1

t

[
t (1− x)α−1

Γ(α)

] [
y (α)
n (x) − f (x , yn(x))

]
dx .

If βn = 1, it reduces to Picard’s scheme.
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Iterative Method Method description

Consider the following differential equation:

L[u] + N[u] = f (t, u),

where L[u] is a linear operator in u, N[u] is a nonlinear operator in u, and
f (t, u) is a linear or nonlinear function in u. Applying Ishikawa fixed point
iterative formula, yields the iterative scheme:


wn = vn + βn

∫ b

a

G (t, s) (L[vn] + N[vn]− f (s, vn)) ds,

vn+1 = (1− αn)vn + αn

[
wn +

∫ b

a

G (t, s) (L[wn] + N[wn]− f (s,wn)) ds

]
.
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Iterative Method Method description

The special case αn = 1 and βn = 0 results in Picard’s scheme, while
the case βn = 0 and αn yields Mann’s scheme. The optimal values of the
sequences (αn)n and (βn)n are found by minimizing the L2-norm of the
residual error, Rn(t;αn, βn), of the nth iteration vn:

∥Rn(t;αn)∥2L2 =
1

b − a

∫ b

a
R2
n(t;αn, βn) dt,

where for each n, Rn(t;αn, βn) is given by

Rn(t;αn) = L[un] + N[un]− f (t, un(t)).
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Convergence Analysis

Convergence Analysis

The convergence analysis is based on the contraction principle and
Banach–Picard fixed point theorem. Consider the BVP:

u′′(t) = f (t, u(t), u′(t)),

u(0) = A, u(1) = B.

The Green’s Ishikawa iterative procedure will take the form


wn = vn + βn

∫ 1

0

G (t, s) (v ′′
n (s)− f (s, vn, v

′
n)) ds,

vn+1 = (1− αn)vn + αn

[
wn +

∫ 1

0

G (t, s) (w ′′
n (s)− f (s,wn,w

′
n)) ds

]
.

The initial iterate v0 satisfies the corresponding homogeneous linear
equation y ′′ = 0 and the BCs. Thus, v0 = (B − A)t + A.
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Convergence Analysis

Introduce the following operator, from the set of continuous functions on
[0, 1] into itself, defined by

TG (u) = u +

∫ 1

0
G (t, s)(u′′ − f (s, u, u′)) ds.

Then, the scheme becomes

{
wn = (1− βn)vn + βnTG (vn),
vn+1 = (1− αn)vn + αnTG (wn).
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Convergence Analysis

In the next theorem, we show that, under some hypothesis on the function
f , our operator TG is a contraction with respect to the supremum norm.
In particular, TG is a Zamfirescu operator. Therefore, we obtain that (vn)n
converges strongly to the fixed point of TG . Here we have to assume that

the sequence (αn)n satisfies the condition
∑
n≥0

αn = ∞.

Theorem

Assume that the function f , which appears in the definition of the
operator TG , is such that

1

4
√
3

sup
[0,1]×R3

∣∣∣∣∂f∂u
∣∣∣∣ < 1.

Then TG is a contraction and hence, the Ishikawa iteration (vn)n
converges strongly to the fixed point of TG .
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Convergence Analysis

A note on Calculus of Variation

Consider the differential equation

Lu + Nu = f (x),

where L and N are linear and nonlinear operators respectively, and f (x) is
the source inhomogeneous term defined on [a, b]. The Variational Iteration
Method admits the use of a correction functional in the form:

un+1(x) = un(x) +

∫ x

a
λ(t) (Lun(t) + N ũn(t)− f (t)) dt.
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Convergence Analysis

Here λ is a general Lagrange’s multiplier, which can be identified optimally
via the variational theory, and ũn is a restricted variation which implies
that δũn = 0. Having λ determined, an iteration scheme is applied for
the determination of the successive approximations un+1(x), n ≥ 0, of the
solution u(x). The solution is constructed as follows:

u(x) = lim
n→∞

un(x).

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green’s functions for the solution of DEs: An iterative strategyJuly 15, 2023 33 / 54



Convergence Analysis

It is important to note that the iterative scheme includes the left endpoint
x = a but not the right endpoint x = b, which is a setback when dealing with
BVPs. The VIM is powerful and suitable for IVPs. Based on this drawback
we will modify the correction functional for BVPs, to include both x = a
and x = b, as follows:

un+1(x) = un(x) +

∫ x

a
λ1(t; x) [Lun(t) + N ũn(t)− f (t)] dt

+

∫ b

x
λ2(t; x) [Lun(t) + N ũn(t)− f (t)] dt.
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Convergence Analysis

Here ũn is a restricted variation (δũn = 0), λ1(t; x) and λ2(t; x) are two
general Lagrange’s multipliers defined on the intervals [a, x ] and [x , b] re-
spectively, that satisfy the corresponding homogeneous BCs at x = b and
x = a respectively. As for the initial term or iterate, u0, it is chosen to
satisfy the given non–homogeneous BCs.
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Numerical Results

Numerical Results

Example. Consider the following differential equation:

y ′′(t) = −ay ′m(t) + y(t)

(
by2(t)− 3

2
y(t) +

1

2

)

subject to

y(0) = 1, y(1) = 2.

The initial iterate satisfies the linear differential operator y ′′ and the
specified BCs. This gives y0 = 1 + t .
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Numerical Results

The higher iterates are given by the following Ishikawa iterative procedure:

yn = xn + βn

∫ t

0
s(1− t)

[
x ′′n (s) + ax ′mn (s)− xn(s)

(
bx2n (s)−

3

2
xn(s) +

1

2

)]
ds

+ βn

∫ 1

t
t(1− s)

[
x ′′n (s) + ax ′mn (s)− xn(s)

(
bx2n (s)−

3

2
xn(s) +

1

2

)]
ds,

xn+1 = (1− αn)xn + αn

[
yn +

∫ t

0
s(1− t)

(
y ′′
n (s) + ay ′m

n (s)− yn(s)

(
by2

n (s)−
3

2
yn(s) +

1

2

))
ds

+

∫ 1

t
t(1− s)

(
y ′′
n (s) + ay ′m

n (s)− yn(s)

(
by2

n (s)−
3

2
yn(s) +

1

2

))
ds

]
,

where a = 1, b = 1, m = 2. By minimizing the L2-norm of the residual
error, the optimal values for αn and βn are found to be α = 0.9345414427
and β = 0.8817524743. Again, by minimizing the L2-norm, the optimal
value of αn for Mann’s is found to be αn = 0.89091489.

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green’s functions for the solution of DEs: An iterative strategyJuly 15, 2023 37 / 54



Numerical Results

The results in the following table clearly show that Ishikawa approach is
more accurate than both Picard and Mann strategies.

Ishikawa Ishikawa Picard Mann
t y7 y15 y15 y15
0.0 4.607507(−8) 2.962480(−17) 2.923141(−9) 6.824221(−11)
0.1 1.531930(−9) 1.293702(−18) 1.380092(−9) 5.875329(−11)
0.2 1.151114(−9) 3.315248(−19) 1.843756(−9) 4.317568(−12)
0.3 3.042586(−10) 1.247576(−20) 5.292063(−9) 7.459339(−11)
0.4 3.017951(−10) 7.714027(−20) 7.206256(−9) 1.420881(−10)
0.5 5.153632(−11) 1.941727(−20) 6.142973(−9) 1.594676(−10)
0.6 2.956696(−10) 8.764974(−21) 1.422278(−9) 9.797271(−11)
0.7 2.981282(−10) 3.892195(−20) 6.461737(−9) 4.990121(−11)
0.8 3.437264(−10) 1.106792(−20) 1.526312(−8) 2.581048(−10)
0.9 3.069509(−9) 4.225158(−19) 2.016841(−8) 4.464999(−10)
1.0 1.200573(−8) 2.885500(−18) 1.337204(−8) 4.518708(−10)

Comparison of the Residual Errors using Ishikawa scheme and that of Picard and Mann.
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Numerical Results

Figure. L2[R1(t;α, β)] versus α and β.
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Numerical Results

Example.

Consider the following Troesch’s boundary layer problem:

u′′ = λ sinhλu, on 0 ≤ t ≤ 1,

subject to

u(0) = 0, u(1) = 1.
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Numerical Results

Eigenvalues λ > 1: For this case, the difficulty of solving the Troesch’s
problem is due to the existence of the boundary layer. Therefore, we intend
to convert the hyperbolic–type nonlinearity into polynomial-type via the
variable transformation:

y(t) = tanh

(
λu(t)

4

)
.
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Numerical Results

Then, the transformed Troesch’s problem becomes

(
1− y2

)
y ′′ + 2y

(
y ′
)2

= λ2y
(
1 + y2

)
,

subject to the new boundary conditions:

y(0) = 0 y(1) = tanh

(
λ

4

)
,

and the solution to this transformed Troesch’s problem is

u(t) =
4

λ
tan−1(y(t)).
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Numerical Results

Since the transformed problem has a dissimilar linear operator than in the
original problem, the corresponding Green’s function will be different. To
implement the iteration method, we will decompose the differential equation
into a linear and nonlinear terms, so it reads as follows: Ly = Ny . Here the
linear operator is given by Ly ≡ y ′′ − λ2y = 0 while the nonlinear one is
Ny ≡ g(y , y ′, y ′′) = y2y ′′ − 2y (y ′)2 + λ2y3. The Green’s function is:

G (t, s) =


sinh(λs) sinh(λ(1− t))

λ sinh(λ)
, 0 ≤ s ≤ t

sinh(λt) sinh(λ(1− s))

λ sinh(λ)
, t ≤ s ≤ 1

.
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Numerical Results

Applying Picard’s based algorithm using this Green’s function, we get the
following iterative scheme:

yn+1 = yn +

∫ t

0

sinh(λs) sinh(λ(1− t))

λ sinh(λ)

[
(1− y2

n )y
′′
n + 2yn(y

′
n)

2 − λ2yn(1 + y2
n )
]
ds

+

∫ 1

t

sinh(λt) sinh(λ(1− s))

λ sinh(λ)

[
(1− y2

n )y
′′
n + 2yn(y

′
n)

2 − λ2yn(1 + y2
n )
]
ds.
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Numerical Results

Using the PGEM, our results for different cases of λ > 1 at different t are
reported in the Tables below.

λ N Numerical Solution U[N] Err[N] U[N]-U[N-1]
2000 2 2.768(−90) 1.13(−1993) 1.45(−2907)
1000 2 1.488(−46) 4.24(−995) 5.54(−1408)
200 2 4.122(−11) 1.07(−196) 6.49(−239)
150 2 8.157(−9) 7.07(−147) 9.35(−171)
100 2 1.816(−6) 4.14(−97) 2.11(−105)
80 2 1.677(−5) 3.01(−77) 6.47(−79)
40 2 1.832(−3) 2.14(−42) 3.29(−38)
20 2 2.723(−2) 3.12(−25) 1.15(−19)
10 6 1.521(−1) 1.02(−21) 2.64(−21)
5 7 4.551(−1) 1.38(−12) 5.10(−18)
2 16 7.905(−1) 1.83(−17) 1.14(−19)

Table: PGEM iteration at t = 0.9 for different λ.
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Numerical Results

t U[2] Err[2] U[2]-U[1]
0.100 1.3428(−80) 4.1(−235) 3.7(−239)
0.200 6.515(−72) 1.1(−243) 5.1(−247)
0.300 3.161(−63) 6.8(−256) 1.2(−255)
0.400 1.534(−54) 8.4(−277) 2.4(−264)
0.500 7.440(−46) 2.1(−354) 4.9(−273)
0.600 3.610(−37) 8.1(−276) 4.8(−264)
0.700 1.751(−28) 8.2(−249) 2.3(−255)
0.800 8.497(−20) 9.4(−223) 1.0(−248)
0.900 4.122(−11) 1.1(−196) 6.5(−239)
0.999 2.306(−02) 6.2(−170) 3.0(−233)

Table: PGEM iteration for λ = 200.
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Numerical Results

t PGEM B-spline Discont. Galerkin VIM
U[6] Err[6] y(t) y(t) y(t)

0.100 0.00004211189927237319 5.01(−22) 4.209661158388(−5) 4.21118992(−5) 4.211189501276(−5)
0.200 0.00012996411582375519 2.41(−28) 1.299195124415(−4) 1.299641158(−4) 1.299641033085(−4)
0.300 0.00035897840138966156 1.47(−26) 3.588639886704(−4) 3.589784013(−4) 3.589783710236(−4)
0.400 0.00097790277180291363 4.01(−26) 9.776162458355(−4) 9.779027718(−4) 9.779027043800(−4)
0.500 0.00265902049035107778 1.09(−25) 2.658310470583(−3) 2.6590204903(−3) 2.659020349167(−3)
0.600 0.00722893121287760637 2.97(−25) 7.227189065535(−3) 7.2289312128(−3) 7.228930931326(−3)
0.700 0.01966406309701858931 8.15(−25) 1.965983675656(−2) 1.96640630970(−2) 1.966406256917(−2)
0.800 0.05373032935060024273 2.38(−24) 5.372021024854(−2) 5.37303293505(−2) 5.373032846396(−2)
0.900 0.15211407640471317805 1.02(−21) 1.520908055685(−1) 1.521140764047(−1) 1.521140752185(−1)
0.925 0.20200168378027548897 1.63(−20) 2.019922958185(−1) − 2.020016825843(−1)
0.950 0.27626773384317687823 2.50(−19) 2.762369555536(−1) − 2.762677326887(−1)
0.970 0.37226433277149032607 2.60(−18) 3.722343195635(−1) − 3.722643317016(−1)
0.980 0.44823303866594251547 1.02(−17) 4.482026699135(−1) − 4.482330376655(−1)
0.990 0.57407649980148049123 6.23(−17) 5.740488905704(−1) − 5.740764989151(−1)
0.995 0.69011494478392945011 2.53(−16) 6.900982796199(−1) − 6.901149440197(−1)
0.997 0.76576972840424519191 5.90(−16) 7.657602795389(−1) − 7.657697277452(−1)
0.998 0.81803283021141076063 1.04(−15) 8.180272700747(−1) − 8.180328296454(−1)
0.999 0.88899311815589450291 2.20(−15) 8.889905508685(−1) − 8.889931177557(−1)

Table: Numerical solutions of the PGEM and other methods for λ = 10.
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Numerical Results

t B-spline Discont. Galerkin VIM
y(t)− U[6] y(t)− U[6] y(t)− U[6]

0.100 1.53(−8) 7.00(−14) 4.26(−12)
0.200 4.46(−8) 2.38(−14) 1.25(−11)
0.300 1.14(−7) 8.97(−14) 3.04(−11)
0.400 2.87(−7) 2.91(−15) 6.74(−11)
0.500 7.10(−7) 5.11(−14) 1.41(−10)
0.600 1.74(−6) 7.76(−14) 2.82(−10)
0.700 4.23(−6) 1.86(−14) 5.28(−10)
0.800 1.01(−5) 1.00(−13) 8.87(−10)
0.900 2.33(−5) 1.32(−14) 1.19(−9)
0.925 9.39(−6) − 1.20(−9)
0.950 3.08(−5) − 1.15(−9)
0.970 3.00(−5) − 1.07(−9)
0.980 3.04(−5) − 1.00(−9)
0.990 2.76(−5) − 8.86(−10)
0.995 1.67(−5) − 7.64(−10)
0.997 9.45(−6) − 6.59(−10)
0.998 5.56(−6) − 5.66(−10)
0.999 2.57(−6) − 4.00(−10)

Table: Comparison of the PGEM with other methods for λ = 10.
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Numerical Results

t PGEM Discont. Galerkin
U[2] Err[2] y(t) y(t) − U[2]

0.100 2.989935089073081040528038611769393350089(−9) 1.42(−27) 2.989864(−9) 7.11(−14)
0.200 2.249744181746109103764066031837561733784(−8) 4.89(−35) 2.2496907(−8) 5.35(−13)
0.300 1.662896222430781569687230012765694306959(−7) 3.55(−37) 1.66285667(−7) 3.96(−12)
0.400 1.228730758747376785419544012782944375368(−6) 2.62(−36) 1.228701537(−6) 2.92(−11)
0.500 9.079161515999958535693906704159052524839(−6) 1.94(−35) 9.078945592(−6) 2.16(−10)
0.600 6.708643637870639942553411773483622698532(−5) 1.43(−34) 6.7084840902(−5) 1.60(−09)
0.700 4.957064383657701225489660589056034206358(−4) 1.16(−33) 4.95694649225(−4) 1.18(−08)
0.800 3.663204766380832427558125256371691331884(−3) 2.78(−33) 3.663117627065(−3) 8.71(−08)
0.900 2.723164347022422216275539986872025768658(−2) 3.34(−27) 2.7230987802378(−2) 6.56(−07)

Table: Comparison of the PGEM with the Discontinuous Galerkin for λ = 20.
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Numerical Results

Figure 1 and Figure 2 show the PGEM iteration solutions of Troesch’s prob-
lem for λ = 0.5, 1, 2, 5, 10, 15, 20, 30 and for λ = 40, 60, 7100, respectively.
The graphs illustrate that the thickness of the boundary layer decreases and
becomes more evident as the eigenvalue increases.

Figure 1. Numerical solution for λ = 0.5, 1, 2, 5, 10, 15, 20, 30.
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Numerical Results

Figure 2. Numerical solution for λ = 40, 60, 100.
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