Fixed–point theory and Green's functions for the solution of DEs: An iterative strategy

Suheil Khoury

Dubai – UAE

July 15, 2023

イロト イヨト イヨト -

3

1/54

Fixed–point theory and Green's functions for the solution of DEs: An iterative strategy

Suheil Khoury

Dubai – UAE

July 15, 2023

イロト イヨト イヨト -

3

2 / 54

A recently developed iterative method for estimating the solution of ordinary and fractional boundary-value problems is described. The strategy is based on the construction of a tailored integral operator described in terms of the Green's function, which corresponds to the highest order linear derivative term. After then, the integral operator is subjected to a fixed-point scheme like Picard's, Mann's, or Ishikawa's. The convergence of the scheme is assessed. Numerical tests are used to assess the applicability and correctness of the approach.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Outline

Problem Statement

2 Iterative Method

- Overview of Green's function
- Overview of fixed-point iterative procedures
- Method description

3 Convergence Analysis

4 Numerical Results

A A A

э

Problem Statement

The aim is to present fixed point iterative schemes for the solution of the following DE/FDE:

$$L[y] + N[y] = f(t, y),$$

where L[y] is a linear operator in y, N[y] is a nonlinear operator in y, and f(t, y) is a linear or nonlinear function in y. The equation is supplemented with either ICs or BCs. An example of such a class is the FBVP:

$$y^{(\alpha)}(t) = f(t, y(t)),$$

 $y(0) = a, y(1) = b,$

where $0 \le t \le 1$, $1 < \alpha \le 2$.

Suheil Khoury (Dubai – UAE) Fixed-point theory and Green's functions for July 15, 2023 5/54

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

Overview of Green's function

Consider the class of n^{th} order linear differential equations

$$L[u] \equiv a_1(t) u^{(n)}(t) + \dots + a_{n-1}(t) u'(t) + a_n(t) u(t) = f(t),$$

on [a,b] and complimented with *n* boundary conditions (BCs):

$$B_1[u(t)] = \alpha_1, \quad B_2[u(t)] = \alpha_2, ..., \quad B_n[u(t)] = \alpha_n.$$

The Green's function is defined to be the solution for the equation:

$$-L[G(t|s)] = \delta(t-s).$$

where δ is the Kronecker Delta, and subject to the corresponding "homogeneous" boundary conditions.

Suheil Khoury (Dubai – UAE) Fixed-point theory and Green's functions for July 15, 2023

6/54

For $t \neq s$, we need to solve L[G(t|s)] = 0, therefore

$$G(t|s) = \begin{cases} c_1u_1 + c_2u_2 + c_3u_3 + \dots + c_nu_n, & a < x < s \\ d_1u_1 + d_2u_2 + d_3u_3 + \dots + d_nu_n, & s < x < b \end{cases},$$

where $u_1, u_2, ..., u_n$ are linearly independent solutions of L[u] = 0.

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green's functions for July 15, 2023

7 / 54

The constants are to be found using the properties:

A. *G* satisfies the *n* homogeneous BCs:

$$B_1[G(t|s)] = B_2[G(t|s)] = \dots = B_n[G(t|s)] = 0,$$

B. Continuity of G, G', G'', ..., $G^{(n-2)}$ at t = s. This results in the n-1 equations:

$$\begin{cases} c_1u_1(s) + c_2u_2(s) + \dots + c_nu_n(s) = d_1u_1(s) + d_2u_2(s) + \dots + d_nu_n(s), \\ c_1u'_1(s) + c_2u'_2(s) + \dots + c_nu'_n(s) = d_1u'_1(s) + d_2u'_2(s) + \dots + d_nu'_n(s), \\ \dots \\ c_1u_1^{(n-2)}(s) + \dots + c_nu_n^{(n-2)}(s) = d_1u_1^{(n-2)}(s) + \dots + d_nu_n^{(n-2)}(s). \end{cases}$$

C. Jump discontinuity of $G^{(n-1)}$ at t = s:

$$d_1u_1^{(n-1)}(s) + ... + d_nu_n^{(n-1)}(s) - c_1u_1^{(n-1)}(s) - ... - c_nu_n^{(n-1)}(s) = \frac{1}{a_n(s)}$$

Definition

The Caputo fractional derivative of order $m-1 < \alpha \leq m$, of a function g(t), is defined as

$$g^{(\alpha)}(t) = J^{m-\alpha}g^{(m)}(t),$$

when

$$J^{lpha}g(t)=rac{1}{\Gamma(lpha)}\int_{0}^{t}(t-s)^{lpha-1}g(s)\,ds,\quad lpha>0,$$

for $m \in \mathbb{N}, t > 0$ and $g \in C_{-1}^m$.

Lemma

The Laplace transform of Caputo fractional derivative for $m-1 < \alpha \leq m, m \in \mathbb{N}$, can be determined in the form of:

$$\mathcal{L}[g^{(\alpha)}(x)] = \frac{s^m G(s) - s^{m-1} g(0) - s^{m-2} g'(0) - \dots - g^{(m-1)}(0)}{s^{m-\alpha}}.$$

э

イロト 不得 トイヨト イヨト

Example

Consider the FBVP:

$$y^{(\alpha)}(t) = f(t, y(t)),$$

$$y(0) = a, y(1) = b.$$

Here $0 \le t \le 1$ and $1 < \alpha \le 2$.

The corresponding Green's function for this FBVP satisfies:

$$\begin{cases} -D^{\alpha}G(t,x) = \delta(t-x), \\ G(0,x) = 0, \quad G(1,x) = 0. \end{cases}$$

Note that the Green's function satisfies the corresponding homogenous boundary conditions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

To obtain the Green's function explicitly, operate with Laplace transform.

$$\frac{s^2\mathcal{L}[G(t,x)]-sG(0,x)-G_t(0,x)}{s^{2-\alpha}}=-e^{-sx}.$$

Assume $G_t(0, x) = K$. Then

$$\mathcal{L}[G(t,x)] = \frac{K}{s^2} - \frac{1}{s^{\alpha}}e^{-sx}.$$

Laplace inverse yields

$$G(t,x) = Kt - \frac{1}{\Gamma(\alpha)}(t-x)^{\alpha-1}\mathcal{U}(t-x),$$

where \mathcal{U} is the Unit Step function.

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green's functions for July 15, 2023 12 / 54

▲ロト ▲ 同 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

The constant K is found using the BC, G(1, x) = 0. We have

$$G(t,x) = \frac{1}{\Gamma(\alpha)}(1-x)^{\alpha-1} t - \frac{1}{\Gamma(\alpha)}(t-x)^{\alpha-1} \mathcal{U}(t-x).$$

Therefore

$$G(t,x) = \begin{cases} \frac{t(1-x)^{\alpha-1} - (t-x)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \le x < t \le 1\\ \frac{t(1-x)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \le t < x \le 1 \end{cases}$$

٠

€ 990

<ロト <回ト < 回ト < 回ト < 回ト -

Example

Consider the FBVP:

$$y^{(\alpha)}(t) - \lambda^2 y(t) = f(t, y(t)),$$

 $y(0) = a, y(1) = b.$

Here $0 \le t \le 1$ and $1 < \alpha \le 2$.

The corresponding Green's function for this FBVP satisfies:

$$\begin{cases} -D^{\alpha}G(t,x) + \lambda^{2}G(t,x) = \delta(t-x), \\ G(0,x) = 0, \quad G(1,x) = 0. \end{cases}$$

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

The Green's function for general value of α , where $1 < \alpha \leq 2$, is given by

$$G(t,x) = \begin{cases} \frac{t(1-x)^{\alpha-1} E_{\alpha,\alpha} \left(\lambda^2 (1-x)^{\alpha}\right) E_{\alpha,2} \left(\lambda^2 t^{\alpha}\right)}{E_{\alpha,2} \left(\lambda^2\right)} - (t-x)^{\alpha-1} E_{\alpha,\alpha} \left(\lambda^2 (t-x)^{\alpha}\right) & 0 \le t < x, \\ \frac{t(1-x)^{\alpha-1} E_{\alpha,\alpha} \left(\lambda^2 (1-x)^{\alpha}\right) E_{\alpha,2} \left(\lambda^2 t^{\alpha}\right)}{E_{\alpha,2} \left(\lambda^2\right)}, & x < t \le 1 \end{cases}$$

Here $E_{a,b}$ is the Mittag–Leffler function.

イロト 不得下 イヨト イヨト

3

The Green's function for the case $\alpha = 2$ reduces to:

$$G(t,x) = \begin{cases} \frac{\sinh(\lambda(1-x))}{\lambda\sinh(\lambda)} \sinh(\lambda t), & 0 \le t < x \\ \frac{\sinh(\lambda(1-t))}{\lambda\sinh(\lambda)} \sinh(\lambda x), & x < t \le 1 \end{cases}$$

•

イロト イポト イヨト イヨト

€ 990

16 / 54

Example

Consider the FIVP:

$$y^{(\alpha)}(t) = f(t, y(t), y'(t)),$$

y(0) = a, y'(0) = b, y''(0) = b.

Here $0 \le t \le 1$ and $2 < \alpha \le 3$.

The corresponding Green's function for this FIVP satisfies:

$$\begin{cases} -D^{\alpha}G(t,x) = \delta(t-x), \\ G(0,x) = 0, \quad G_t(0,x) = 0, \quad G_{tt}(0,x) = 0. \end{cases}$$

э

イロト イポト イヨト イヨト

Overview of fixed-point iterative procedures

Let X be a normed linear space and $T : X \to X$ a given operator. Next, we list the most well-known fixed-point iterative schemes.

I. Picard's Iteration: $y_0 \in X$ and $\{y_n\}_{n=0}^{\infty}$ defined by:

$$y_{n+1} = T[y_n], \quad n = 0, 1, 2,$$

II. Krasnoselkij's Iteration: $y_0 \in X$, $\gamma \in [0, 1]$, $\{y_n\}_{n=0}^{\infty}$ defined by

$$y_{n+1} = (1 - \gamma)y_n + \gamma T[y_n], \quad n = 0, 1, 2,$$

・ロ ト ・ 一 マ ・ ー ヨ ト ・ ヨ ・ う へ つ ・

III. Mann's Iteration: $y_0 \in X$, $\{\alpha_n\} \subset [0,1]$, $\{y_n\}_{n=0}^{\infty}$ defined by:

$$y_{n+1} = (1 - \alpha_n)y_n + \alpha_n T[y_n], \quad n = 0, 1, 2, \dots$$

IV. Ishikawa's Iteration: $\{y_n\}_{n=0}^{\infty}$ is defined by:

$$\begin{cases} y_{n+1} = (1 - \alpha_n)y_n + \alpha_n T[z_n], \\ z_n = (1 - \beta_n)y_n + \beta_n T[y_n], \quad n = 0, 1, 2, ..., \end{cases}$$

イロト 不得下 イヨト イヨト 二日

19 / 54

where $\{\alpha_n\}$ and $\{\beta_n\} \subset [0,1]$, and $y_0 \in X$ is arbitrary.

Method description

We present the iterative method for the FBVP:

$$y^{(\alpha)}(t) = f(t, y(t)),$$

 $y(0) = a, y(1) = b.$

Here $0 \le t \le 1$, $1 < \alpha \le 2$. Note that

$$y_{\rho}(t) = \int_0^1 G(t,x) f(x,y_{\rho}(x)) dx,$$

Sac

20 / 54

where y_p is a particular solution for the equation that satisfies the corresponding homogeneous boundary conditions.

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green's functions for July 15, 2023

An important note is that for the nonhomogeneous BCs, the particular solution contains terms outside the integral:

$$y_{\rho}(t) = \int_{a}^{b} G(t,x)f(x) dx + b G(t,1) + a \frac{\partial G}{\partial x}(t,0).$$

This latter term outside the integral will not be visible in the iterative scheme, as it is set to the value of the first iteration, i.e. y_0 is chosen as:

$$y_0(t) = b G(t, 1) + a \frac{\partial G}{\partial x}(t, 0).$$

This solution satisfies the nonhomogeneous boundary conditions.

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green's functions for July 15, 2023 21 / 54

ヘロト ヘ回ト ヘヨト ヘヨト

Define the following integral operator:

$$L[y] \equiv \int_0^1 G(t,x) y^{(\alpha)}(x) \, dx.$$

Rewrite the equation as:

$$L[y] = \int_0^1 G(t,x) \left[y^{(\alpha)}(x) - f(x,y(x)) \right] \, dx + \int_0^1 G(t,x) \, f(x,y(x)) \, dx.$$

The equation reduces to:

$$L[y_p] = \int_0^1 G(t,x) \left[y_p^{(\alpha)}(x) - f(x,y_p(x)) \right] dx + y_p.$$

Suheil Khoury (Dubai – UAE) Fixed-point theory and Green's functions for July 15, 2023 22 / 54

э

イロト イヨト イヨト -

Applying Picard's iteration scheme to the operator L[y], namely

$$y_{n+1} = L[y_n], \quad n = 0, 1, 2, ...,$$

we obtain the following iterative procedure:

$$y_{n+1} = y_n + \int_0^1 G(t,x) \left[y_n^{(\alpha)}(x) - f(x,y_n(x)) \right] dx.$$

イロト 不得下 イヨト イヨト 二日

Other well-known iterative procedures can be applied to the operator L[y]. For instance, applying Mann's procedure:

$$y_{n+1} = (1 - \beta_n)y_n + \beta_n L[y_n], \quad \forall n \ge 0,$$

to L[y] yields the itertive scheme:

$$y_{n+1} = y_n + \beta_n \int_0^1 G(t,x) \left[y^{(\alpha)}(x) - f(x,y(x)) \right] dx.$$

Here β_n is a sequence between 0 and 1. Mann's iterative procedure can be used in some cases when Picard's scheme diverges.

Suheil Khoury (Dubai – UAE)	Fixed-point theory and Green's functions for	July 15, 2023	24 / 54

If the sequence β_n is chosen correctly, the rate of convergence of the scheme will be accelerated and optimal values for β_n are obtained. One approach to find optimal values of β_n is by minimizing the $L^2[a, b]$ -norm of the residual error, $R_n(x; \beta_n)$, of the n^{th} iteration y_n . For the first iterate, y_1 , the L^2 norm of the residual error $R_1(x; \beta_1)$ is:

$$||R_1(x;\beta_1)||_{L^2}^2 = \int_a^b |R_1(x;\beta_1)|^2 dx,$$

needs to minimized for β_1 . The other values of β_n can be acquired in a similar way.

• □ ▶ • 4 □ ▶ • □ ▶ • 0 ■ ▶ • 0

The Mann's iterative scheme for the FBVP and subject to the BCs is given as follows:

$$y_{n+1} = y_n + \beta_n \int_0^t \left[\frac{t (1-x)^{\alpha-1} - (t-x)^{\alpha-1}}{\Gamma(\alpha)} \right] \left[y_n^{(\alpha)}(x) - f(x, y_n(x)) \right] dx + \beta_n \int_t^1 \left[\frac{t (1-x)^{\alpha-1}}{\Gamma(\alpha)} \right] \left[y_n^{(\alpha)}(x) - f(x, y_n(x)) \right] dx.$$

If $\beta_n = 1$, it reduces to Picard's scheme.

э

イロト 人間ト イヨト イヨト

Consider the following differential equation:

L[u] + N[u] = f(t, u),

where L[u] is a linear operator in u, N[u] is a nonlinear operator in u, and f(t, u) is a linear or nonlinear function in u. Applying Ishikawa fixed point iterative formula, yields the iterative scheme:

$$\begin{cases} w_n = v_n + \beta_n \int_a^b G(t,s) \left(L[v_n] + N[v_n] - f(s,v_n) \right) ds, \\ v_{n+1} = (1 - \alpha_n) v_n + \alpha_n \left[w_n + \int_a^b G(t,s) \left(L[w_n] + N[w_n] - f(s,w_n) \right) ds \right] \end{cases}$$

• □ ▶ • 4 □ ▶ • □ ▶ • 0 ■ ▶ • 0

27 / 54

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green's functions for July 15, 2023

The special case $\alpha_n = 1$ and $\beta_n = 0$ results in Picard's scheme, while the case $\beta_n = 0$ and α_n yields Mann's scheme. The optimal values of the sequences $(\alpha_n)_n$ and $(\beta_n)_n$ are found by minimizing the L^2 -norm of the residual error, $R_n(t; \alpha_n, \beta_n)$, of the n^{th} iteration v_n :

$$\|R_n(t;\alpha_n)\|_{L^2}^2 = \frac{1}{b-a} \int_a^b R_n^2(t;\alpha_n,\beta_n) dt$$

where for each *n*, $R_n(t; \alpha_n, \beta_n)$ is given by

$$R_n(t;\alpha_n) = L[u_n] + N[u_n] - f(t,u_n(t)).$$

Convergence Analysis

The convergence analysis is based on the contraction principle and Banach–Picard fixed point theorem. Consider the BVP:

$$u''(t) = f(t, u(t), u'(t)),$$

 $u(0) = A, \quad u(1) = B.$

The Green's Ishikawa iterative procedure will take the form

$$\begin{cases} w_n = v_n + \beta_n \int_0^1 G(t,s) \left(v_n''(s) - f(s,v_n,v_n') \right) ds, \\ v_{n+1} = (1-\alpha_n)v_n + \alpha_n \left[w_n + \int_0^1 G(t,s) \left(w_n''(s) - f(s,w_n,w_n') \right) ds \right]. \end{cases}$$

The initial iterate v_0 satisfies the corresponding homogeneous linear equation y'' = 0 and the BCs. Thus, $v_0 = (B - A)t + A$, $z_0 = (B - A)t + A$.

29 / 54

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green's functions for July 15, 2023

Introduce the following operator, from the set of continuous functions on [0,1] into itself, defined by

$$T_G(u) = u + \int_0^1 G(t,s)(u'' - f(s,u,u')) \, ds.$$

Then, the scheme becomes

$$\begin{cases} w_n = (1-\beta_n)v_n + \beta_n T_G(v_n), \\ v_{n+1} = (1-\alpha_n)v_n + \alpha_n T_G(w_n). \end{cases}$$

3

イロト 不得 トイヨト イヨト

In the next theorem, we show that, under some hypothesis on the function f, our operator T_G is a contraction with respect to the supremum norm. In particular, T_G is a Zamfirescu operator. Therefore, we obtain that $(v_n)_n$ converges strongly to the fixed point of T_G . Here we have to assume that the sequence $(\alpha_n)_n$ satisfies the condition $\sum_{n\geq 0} \alpha_n = \infty$.

Theorem

Assume that the function f, which appears in the definition of the operator T_G , is such that

$$\frac{1}{4\sqrt{3}}\sup_{[0,1]\times\mathbb{R}^3}\left|\frac{\partial f}{\partial u}\right|<1.$$

Then T_G is a contraction and hence, the Ishikawa iteration $(v_n)_n$ converges strongly to the fixed point of T_G .

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green's functions for July

July 15, 2023

A I > A I > A

31 / 54

Convergence Analysis

A note on Calculus of Variation

Consider the differential equation

$$Lu + Nu = f(x),$$

where L and N are linear and nonlinear operators respectively, and f(x) is the source inhomogeneous term defined on [a, b]. The Variational Iteration Method admits the use of a correction functional in the form:

$$u_{n+1}(x) = u_n(x) + \int_a^x \lambda(t) \left(Lu_n(t) + N \tilde{u}_n(t) - f(t) \right) dt.$$

• □ ▶ • 4 □ ▶ • □ ▶ • 0 ■ ▶ • 0

Here λ is a general Lagrange's multiplier, which can be identified optimally via the variational theory, and \tilde{u}_n is a restricted variation which implies that $\delta \tilde{u}_n = 0$. Having λ determined, an iteration scheme is applied for the determination of the successive approximations $u_{n+1}(x)$, $n \ge 0$, of the solution u(x). The solution is constructed as follows:

$$u(x) = \lim_{n\to\infty} u_n(x).$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

It is important to note that the iterative scheme includes the left endpoint x = a but not the right endpoint x = b, which is a setback when dealing with BVPs. The VIM is powerful and suitable for IVPs. Based on this drawback we will modify the correction functional for BVPs, to include both x = a and x = b, as follows:

$$u_{n+1}(x) = u_n(x) + \int_a^x \lambda_1(t;x) [Lu_n(t) + N \tilde{u}_n(t) - f(t)] dt$$

+ $\int_x^b \lambda_2(t;x) [Lu_n(t) + N \tilde{u}_n(t) - f(t)] dt.$

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green's functions for July

July 15, 2023

ヘロト 人間 ト イヨト イヨト

Here \tilde{u}_n is a restricted variation ($\delta \tilde{u}_n = 0$), $\lambda_1(t; x)$ and $\lambda_2(t; x)$ are two general Lagrange's multipliers defined on the intervals [a, x] and [x, b] respectively, that satisfy the corresponding homogeneous BCs at x = b and x = a respectively. As for the initial term or iterate, u_0 , it is chosen to satisfy the given non-homogeneous BCs.

イロト イヨト イヨト -

Numerical Results

Example. Consider the following differential equation:

$$y''(t) = -ay'^m(t) + y(t)\left(by^2(t) - \frac{3}{2}y(t) + \frac{1}{2}\right)$$

subject to

$$y(0) = 1, y(1) = 2.$$

The initial iterate satisfies the linear differential operator y'' and the specified BCs. This gives $y_0 = 1 + t$.

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green's functions for July 15, 2023 36 / 54

イロト イポト イヨト イヨト

э

The higher iterates are given by the following Ishikawa iterative procedure:

$$y_n = x_n + \beta_n \int_0^t s(1-t) \left[x_n''(s) + a x_n''(s) - x_n(s) \left(b x_n^2(s) - \frac{3}{2} x_n(s) + \frac{1}{2} \right) \right] ds$$

+ $\beta_n \int_t^1 t(1-s) \left[x_n''(s) + a x_n''(s) - x_n(s) \left(b x_n^2(s) - \frac{3}{2} x_n(s) + \frac{1}{2} \right) \right] ds,$

$$\begin{aligned} x_{n+1} &= (1-\alpha_n)x_n + \alpha_n \left[y_n + \int_0^t s(1-t) \left(y_n''(s) + a y_n'''(s) - y_n(s) \left(b y_n^2(s) - \frac{3}{2} y_n(s) + \frac{1}{2} \right) \right. \\ &+ \int_t^1 t(1-s) \left(y_n''(s) + a y_n'''(s) - y_n(s) \left(b y_n^2(s) - \frac{3}{2} y_n(s) + \frac{1}{2} \right) \right) ds \right], \end{aligned}$$

where a = 1, b = 1, m = 2. By minimizing the L^2 -norm of the residual error, the optimal values for α_n and β_n are found to be $\alpha = 0.9345414427$ and $\beta = 0.8817524743$. Again, by minimizing the L^2 -norm, the optimal value of α_n for Mann's is found to be $\alpha_n = 0.89091489$.

The results in the following table clearly show that Ishikawa approach is more accurate than both Picard and Mann strategies.

	Ishikawa	Ishikawa	Picard	Mann
t	Ут	<i>Y</i> 15	<i>Y</i> 15	<i>Y</i> 15
0.0	4.607507(-8)	2.962480(-17)	2.923141(-9)	6.824221(-11)
0.1	1.531930(-9)	1.293702(-18)	1.380092(-9)	5.875329(-11)
0.2	1.151114(-9)	3.315248(-19)	1.843756(-9)	4.317568(-12)
0.3	3.042586(-10)	1.247576(-20)	5.292063(-9)	7.459339(-11)
0.4	3.017951(-10)	7.714027(-20)	7.206256(-9)	1.420881(-10)
0.5	5.153632(-11)	1.941727(-20)	6.142973(-9)	1.594676(-10)
0.6	2.956696(-10)	8.764974(-21)	1.422278(-9)	9.797271(-11)
0.7	2.981282(-10)	3.892195(-20)	6.461737(-9)	4.990121(-11)
0.8	3.437264(-10)	1.106792(-20)	1.526312(-8)	2.581048(-10)
0.9	3.069509(-9)	4.225158(-19)	2.016841(-8)	4.464999(-10)
1.0	1.200573(-8)	2.885500(-18)	1.337204(-8)	4.518708(-10)

Comparison of the Residual Errors using Ishikawa scheme and that of Picard and Mann.

Numerical Results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

999

Example.

Consider the following Troesch's boundary layer problem:

$$u'' = \lambda \sinh \lambda u$$
, on $0 \le t \le 1$,

subject to

 $u(0) = 0, \quad u(1) = 1.$

 Suheil Khoury (Dubai – UAE)
 Fixed-point theory and Green's functions for
 July 15, 2023
 40 / 54

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

Eigenvalues $\lambda > 1$: For this case, the difficulty of solving the Troesch's problem is due to the existence of the boundary layer. Therefore, we intend to convert the hyperbolic-type nonlinearity into polynomial-type via the variable transformation:

$$y(t) = anh\left(rac{\lambda u(t)}{4}
ight).$$

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

Then, the transformed Troesch's problem becomes

$$(1-y^2) y'' + 2y (y')^2 = \lambda^2 y (1+y^2),$$

subject to the new boundary conditions:

$$y(0) = 0$$
 $y(1) = \tanh\left(\frac{\lambda}{4}\right),$

and the solution to this transformed Troesch's problem is

$$u(t) = rac{4}{\lambda} an^{-1}(y(t)).$$

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green's functions for July 19

イロト イ理ト イヨト イヨト

э

Since the transformed problem has a dissimilar linear operator than in the original problem, the corresponding Green's function will be different. To implement the iteration method, we will decompose the differential equation into a linear and nonlinear terms, so it reads as follows: Ly = Ny. Here the linear operator is given by $Ly \equiv y'' - \lambda^2 y = 0$ while the nonlinear one is $Ny \equiv g(y, y', y'') = y^2 y'' - 2y (y')^2 + \lambda^2 y^3$. The Green's function is:

$${\cal G}(t,s) = \left\{ egin{array}{c} \displaystyle \frac{\sinh(\lambda s)\sinh(\lambda(1-t))}{\lambda\sinh(\lambda)}, & 0 \leq s \leq t \ \displaystyle \frac{\sinh(\lambda t)\sinh(\lambda(1-s))}{\lambda\sinh(\lambda)}, & t \leq s \leq 1 \end{array}
ight.$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

43 / 54

Applying Picard's based algorithm using this Green's function, we get the following iterative scheme:

$$y_{n+1} = y_n + \int_0^t \frac{\sinh(\lambda s)\sinh(\lambda(1-t))}{\lambda\sinh(\lambda)} \left[(1-y_n^2)y_n'' + 2y_n(y_n')^2 - \lambda^2 y_n(1+y_n^2) \right] ds + \int_t^1 \frac{\sinh(\lambda t)\sinh(\lambda(1-s))}{\lambda\sinh(\lambda)} \left[(1-y_n^2)y_n'' + 2y_n(y_n')^2 - \lambda^2 y_n(1+y_n^2) \right] ds.$$

イロト イポト イヨト イヨト

э

44 / 54

Using the PGEM, our results for different cases of $\lambda > 1$ at different t are reported in the Tables below.

λ	Ν	Numerical Solution U[N]	Err[N]	U[N]-U[N-1]
2000	2	2.768(-90)	1.13(-1993)	1.45(-2907)
1000	2	1.488(-46)	4.24(-995)	5.54(-1408)
200	2	4.122(-11)	1.07(-196)	6.49(-239)
150	2	8.157(-9)	7.07(-147)	9.35(-171)
100	2	1.816(-6)	4.14(-97)	2.11(-105)
80	2	1.677(-5)	3.01(-77)	6.47(-79)
40	2	1.832(-3)	2.14(-42)	3.29(-38)
20	2	2.723(-2)	3.12(-25)	1.15(-19)
10	6	1.521(-1)	1.02(-21)	2.64(-21)
5	7	4.551(-1)	1.38(-12)	5.10(-18)
2	16	7.905(-1)	1.83(-17)	1.14(-19)

Table: PGEM iteration at t = 0.9 for different λ .

・ロト ・ 同ト ・ ヨト ・ ヨト

э

45 / 54

 Suheil Khoury (Dubai – UAE)
 Fixed-point theory and Green's functions for
 July 15, 2023

t	U[2]	Err[2]	U[2]-U[1]
0.100	1.3428(-80)	4.1(-235)	3.7(-239)
0.200	6.515(-72)	1.1(-243)	5.1(-247)
0.300	3.161(-63)	6.8(-256)	1.2(-255)
0.400	1.534(-54)	8.4(-277)	2.4(-264)
0.500	7.440(-46)	2.1(-354)	4.9(-273)
0.600	3.610(-37)	8.1(-276)	4.8(-264)
0.700	1.751(-28)	8.2(-249)	2.3(-255)
0.800	8.497(-20)	9.4(-223)	1.0(-248)
0.900	4.122(-11)	1.1(-196)	6.5(-239)
0.999	2.306(-02)	6.2(-170)	3.0(-233)

Table: PGEM iteration for $\lambda = 200$.

E

<ロト <回ト < 回ト < 回ト < 回ト -

シへで 46/54

t	PGEM		B-spline	Discont. Galerkin	VIM
	U[6]	Err[6]	y(t)	y(t)	y(t)
0.100	0.00004211189927237319	5.01(-22)	4.209661158388(-5)	4.21118992(-5)	4.211189501276(-5)
0.200	0.00012996411582375519	2.41(-28)	1.299195124415(-4)	1.299641158(-4)	1.299641033085(-4)
0.300	0.00035897840138966156	1.47(-26)	3.588639886704(-4)	3.589784013(-4)	3.589783710236(-4)
0.400	0.00097790277180291363	4.01(-26)	9.776162458355(-4)	9.779027718(-4)	9.779027043800(-4)
0.500	0.00265902049035107778	1.09(-25)	2.658310470583(-3)	2.6590204903(-3)	2.659020349167(-3)
0.600	0.00722893121287760637	2.97(-25)	7.227189065535(-3)	7.2289312128(-3)	7.228930931326(-3)
0.700	0.01966406309701858931	8.15(-25)	1.965983675656(-2)	1.96640630970(-2)	1.966406256917(-2)
0.800	0.05373032935060024273	2.38(-24)	5.372021024854(-2)	5.37303293505(-2)	5.373032846396(-2)
0.900	0.15211407640471317805	1.02(-21)	1.520908055685(-1)	1.521140764047(-1)	1.521140752185(-1)
0.925	0.20200168378027548897	1.63(-20)	2.019922958185(-1)	_	2.020016825843(-1)
0.950	0.27626773384317687823	2.50(-19)	2.762369555536(-1)	—	2.762677326887(-1)
0.970	0.37226433277149032607	2.60(-18)	3.722343195635(-1)	_	3.722643317016(-1)
0.980	0.44823303866594251547	1.02(-17)	4.482026699135(-1)	_	4.482330376655(-1)
0.990	0.57407649980148049123	6.23(-17)	5.740488905704(-1)	_	5.740764989151(-1)
0.995	0.69011494478392945011	2.53(-16)	6.900982796199(-1)	_	6.901149440197(-1)
0.997	0.76576972840424519191	5.90(-16)	7.657602795389(-1)	—	7.657697277452(-1)
0.998	0.81803283021141076063	1.04(-15)	8.180272700747(-1)	—	8.180328296454(-1)
0.999	0.88899311815589450291	2.20(-15)	8.889905508685(-1)	_	8.889931177557(-1)

Table: Numerical solutions of the PGEM and other methods for $\lambda = 10$.

イロト イポト イヨト イヨト

= 990

47 / 54

Numerical Results

t	B-spline	Discont. Galerkin	VIM
	y(t) - U[6]	y(t) - U[6]	y(t) - U[6]
0.100	1.53(-8)	7.00(-14)	4.26(-12)
0.200	4.46(-8)	2.38(-14)	1.25(-11)
0.300	1.14(-7)	8.97(-14)	3.04(-11)
0.400	2.87(-7)	2.91(-15)	6.74(-11)
0.500	7.10(-7)	5.11(-14)	1.41(-10)
0.600	1.74(-6)	7.76(-14)	2.82(-10)
0.700	4.23(-6)	1.86(-14)	5.28(-10)
0.800	1.01(-5)	1.00(-13)	8.87(-10)
0.900	2.33(-5)	1.32(-14)	1.19(-9)
0.925	9.39(-6)	-	1.20(-9)
0.950	3.08(-5)	-	1.15(-9)
0.970	3.00(-5)	_	1.07(-9)
0.980	3.04(-5)	_	1.00(-9)
0.990	2.76(-5)	-	8.86(-10)
0.995	1.67(-5)	-	7.64(-10)
0.997	9.45(-6)	_	6.59(-10)
0.998	5.56(-6)	-	5.66(-10)
0.999	2.57(-6)	-	4.00(-10)

Table: Comparison of the PGEM with other methods for $\lambda = 10$.

Suheil Khoury (Dubai – UAE) Fixed–point theory and Green's functions for July

<ロト < 回ト < 回ト < 回ト < 回ト -

ク < (~ 48 / 54

Ξ.

t	PGEM		Discont. Galerkin	
	U[2]	Err[2]	y(t)	y(t) - U[2]
0.100	2.989935089073081040528038611769393350089(-9)	1.42(-27)	2.989864(-9)	7.11(-14)
0.200	2.249744181746109103764066031837561733784(-8)	4.89(-35)	2.2496907(-8)	5.35(-13)
0.300	1.662896222430781569687230012765694306959(-7)	3.55(-37)	1.66285667(-7)	3.96(-12)
0.400	1.228730758747376785419544012782944375368(-6)	2.62(-36)	1.228701537(-6)	2.92(-11)
0.500	9.079161515999958535693906704159052524839(-6)	1.94(-35)	9.078945592(-6)	2.16(-10)
0.600	6.708643637870639942553411773483622698532(-5)	1.43(-34)	6.7084840902(-5)	1.60(-09)
0.700	4.957064383657701225489660589056034206358(-4)	1.16(-33)	4.95694649225(-4)	1.18(-08)
0.800	3.663204766380832427558125256371691331884(-3)	2.78(-33)	3.663117627065(-3)	8.71(-08)
0.900	2.723164347022422216275539986872025768658(-2)	3.34(-27)	2.7230987802378(-2)	6.56(-07)

Table: Comparison of the PGEM with the Discontinuous Galerkin for $\lambda = 20$.

э

イロト イボト イヨト イヨト

Figure 1 and Figure 2 show the PGEM iteration solutions of Troesch's problem for $\lambda = 0.5, 1, 2, 5, 10, 15, 20, 30$ and for $\lambda = 40, 60, 7100$, respectively. The graphs illustrate that the thickness of the boundary layer decreases and becomes more evident as the eigenvalue increases.

Figure 1. Numerical solution for $\lambda = 0.5, 1, 2, 5, 10, 15, 20, 30$.

Suheil Khoury (Dubai – UAE)	Fixed-point theory and Green's functions for	July 15, 2023 50 /	54
-----------------------------	--	--------------------	----

Numerical Results

Figure 2. Numerical solution for $\lambda = 40, 60, 100$.

Suheil Khoury (Dubai – UAE)	Fixed-point theory and Green's functions for	July 15, 2023 51	/ 54

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

References

- G.I. Shishkin, Grid approximation of singularly perturbed elliptic and parabolic equations, Second Doctorial Thesis, Keldysh Institute, Moscow, 1990 (in Russian).
- Grigory I. Shishkin, Lidia P. Shishkina. Difference Methods for Singular Perturbation Problems, Chapman and Hall/CRC, New York, 2008.
- J.J.H. Miller, E. O'Riordan, G.I. Shishkin. Solution of Singularly Perturbed Problems with *ϵ*-uniform Numerical Methods — Introduction to the Theory of Linear Problems in One and Two Dimensions, World Scientific, Singapore, 1996.
- J.J.H. Miller, E. O'Riordan, G.I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

- Kafri, H. Q., Khuri, S.A. and Sayfy, A. (2016). A new approach based on embedding Green's functions into fixed-point iterations for highly accurate solution to Troesch's problem. *International Journal for Computational Methods in Engineering Science and Mechanics*, 17(2), 93– 105.
- Khuri, S.A. and Sayfy, A. (2017). Generalizing the variational iteration method for BVPs: Proper setting of the correction functional. *Applied Mathematics Letters, 68*, 68–75.
- Khuri, S.A. and Louhichi, I. (2018). A novel Ishikawa–Green's fixed point scheme for the solution of BVPs. *Applied Mathematics Letter*, *82*, 50–57.
- S.A. Khuri, and A. Sayfy (2014). Variational iteration method: Green's functions and fixed point iterations perspective, *Applied Mathematics Letters*, *32*, 28–34.

ヘロト ヘ回ト ヘヨト ヘヨト

3

Thank You

<ロト <回ト < 回ト < 回ト < 回ト -

= 990

54 / 54