On the norm of the Riesz projection from L^{∞} to L^{p}

Sergei Konyagin

January 11, 2024

The one-dimensional case

The talk is based on our joint paper with Hervé Queffeléc, Eero Saksman, and Kristian Seip.

The one-dimensional case

The talk is based on our joint paper with Hervé Queffeléc, Eero Saksman, and Kristian Seip.
Let $\mathbb{T}=\mathbb{R} /(2 \pi \mathbb{Z})$. We consider the normalized Lebesgue measure on $\mathbb{T}: d \mu=d x /(2 \pi)$. Thus, $\mu(\mathbb{T})=1$. For $p \in[1, \infty)$, let $L^{p}(\mathbb{T})$ be the set of integrable functions $f: \mathbb{T} \rightarrow \mathbb{C}$ such that

$$
\|f\|_{p}^{p}:=\int_{\mathbb{T}}|f|^{p} d \mu<\infty
$$

Also, let $L^{\infty}(\mathbb{T})$ be the space of essentially bounded functions $f: \mathbb{T} \rightarrow \mathbb{C}$. Next, for every function $f \in L(\mathbb{T}):=L^{1}(\mathbb{T})$ we define its trigonometric Fourier series

$$
f \sim \sum_{k \in \mathbb{Z}} \hat{f}(k) e^{i k x}
$$

where

$$
\hat{f}(k)=\int_{\mathbb{T}} f(x) e^{-i k x} d \mu
$$

For a function $f \in L(\mathbb{T})$ we can try to define

$$
P^{+} f=\sum_{k \in \mathbb{Z}_{+}} \hat{f}(k) e^{i k x},
$$

The function $P^{+} f$ is well-defined for $f \in L^{p}(\mathbb{T}), p>1$. Actually, $P^{+} f$ can be defined for any $f \in L(\mathbb{T})$, but in general it is not an integrable function. If $1<p<\infty$, then, by the classical theorem of M . Riesz, the operator P^{+}is bounded as an operator $L^{p} \rightarrow L^{p}$.

For a function $f \in L(\mathbb{T})$ we can try to define

$$
P^{+} f=\sum_{k \in \mathbb{Z}_{+}} \hat{f}(k) e^{i k x}
$$

The function $P^{+} f$ is well-defined for $f \in L^{p}(\mathbb{T}), p>1$. Actually, $P^{+} f$ can be defined for any $f \in L(\mathbb{T})$, but in general it is not an integrable function. If $1<p<\infty$, then, by the classical theorem of M . Riesz, the operator P^{+}is bounded as an operator $L^{p} \rightarrow L^{p}$.
Clearly, for $p=2$ the norm of this operator is 1 . B. Hollenbeck and I.E. Verbitsky (2000) proved that for any $p \in(1, \infty)$ the norm is $1 / \sin (\pi / p)$. We observe that this is greater than 1 if $p \neq 2$.

For $2 \leq p, q \leq \infty$ we denote by $\left\|P^{+}\right\|_{q, p}$ the norm of the operator $P^{+}: L^{q}(\mathbb{T}) \rightarrow L^{p}(\mathbb{T})$. It is easy to see that $\left\|P^{+}\right\|_{q, p}=\infty$ if $p>q$ or $p=q=\infty$. We will assume that $2 \leq p \leq q$ and $p<\infty$. Since $\|f\|_{q} \geq\|f\|_{p}$, we get

$$
\left\|P^{+}\right\|_{q, p} \leq\left\|P^{+}\right\|_{p, p}<\infty
$$

In particular, $\left\|P^{+}\right\|_{q, 2} \leq 1$. Since always $\left\|P^{+}\right\|_{q, p} \geq 1$, we conclude that $\left\|P^{+}\right\|_{q, 2}=1$ for any $q \geq 2$.

For $2 \leq p, q \leq \infty$ we denote by $\left\|P^{+}\right\|_{q, p}$ the norm of the operator $P^{+}: L^{q}(\mathbb{T}) \rightarrow L^{p}(\mathbb{T})$. It is easy to see that $\left\|P^{+}\right\|_{q, p}=\infty$ if $p>q$ or $p=q=\infty$. We will assume that $2 \leq p \leq q$ and $p<\infty$. Since $\|f\|_{q} \geq\|f\|_{p}$, we get

$$
\left\|P^{+}\right\|_{q, p} \leq\left\|P^{+}\right\|_{p, p}<\infty
$$

In particular, $\left\|P^{+}\right\|_{q, 2} \leq 1$. Since always $\left\|P^{+}\right\|_{q, p} \geq 1$, we conclude that $\left\|P^{+}\right\|_{q, 2}=1$ for any $q \geq 2$.
Although we know that $\left\|P^{+}\right\|_{p, p}>1$ for any $p>2$, it can happen that $\left\|P^{+}\right\|_{q, p}=1$ for some $q>p>2$. It was a nice question for which $p \geq 2$ the equality $\left\|P^{+}\right\|_{\infty, p}=1$ holds. The answer was given by J. Marzo and K. Seip (2011). They showed that $\left\|P^{+}\right\|_{\infty, p}=1$ for $p \leq 4$ and $\left\|P^{+}\right\|_{\infty, p}>1$ for $p>4$.

Let $p=4$. We write $P^{-}=I-P^{+}$where I is the identity operator. Thus,

$$
P^{-} f=\sum_{-k \in \mathbb{N}} \hat{f}(k) e^{i k x}
$$

We have $\left(P^{+} f\right)^{2} \perp\left(P^{-} f\right)^{2}$ whenever f is a bounded function on \mathbb{T}. Therefore,

$$
\begin{gathered}
\left\|P^{+} f\right\|_{4}^{4}=\left\|\left(P^{+} f\right)^{2}\right\|_{2}^{2} \leq\left\|\left(P^{+} f\right)^{2}-\left(P^{-} f\right)^{2}\right\|_{2}^{2} \\
=\left\|f\left(P^{+} f-P^{-} f\right)\right\|_{2}^{2} \leq\|f\|_{\infty}^{2}\|f\|_{2}^{2} \leq\|f\|_{\infty}^{4}
\end{gathered}
$$

Let $p=4$. We write $P^{-}=I-P^{+}$where I is the identity operator. Thus,

$$
P^{-} f=\sum_{-k \in \mathbb{N}} \hat{f}(k) e^{i k x}
$$

We have $\left(P^{+} f\right)^{2} \perp\left(P^{-} f\right)^{2}$ whenever f is a bounded function on \mathbb{T}.
Therefore,

$$
\begin{gathered}
\left\|P^{+} f\right\|_{4}^{4}=\left\|\left(P^{+} f\right)^{2}\right\|_{2}^{2} \leq\left\|\left(P^{+} f\right)^{2}-\left(P^{-} f\right)^{2}\right\|_{2}^{2} \\
=\left\|f\left(P^{+} f-P^{-} f\right)\right\|_{2}^{2} \leq\|f\|_{\infty}^{2}\|f\|_{2}^{2} \leq\|f\|_{\infty}^{4}
\end{gathered}
$$

This estimate implies that $\left\|P^{+}\right\|_{\infty, 4}=1$. Since the mapping $p \rightarrow\left\|P^{+}\right\|_{\infty, p}$ is nondecreasing, we conclude that $\left\|P^{+}\right\|_{\infty, p}=1$ for $p \leq 4$.

Let $p=4$. We write $P^{-}=I-P^{+}$where I is the identity operator. Thus,

$$
P^{-} f=\sum_{-k \in \mathbb{N}} \hat{f}(k) e^{i k x}
$$

We have $\left(P^{+} f\right)^{2} \perp\left(P^{-} f\right)^{2}$ whenever f is a bounded function on \mathbb{T}.
Therefore,

$$
\begin{gathered}
\left\|P^{+} f\right\|_{4}^{4}=\left\|\left(P^{+} f\right)^{2}\right\|_{2}^{2} \leq\left\|\left(P^{+} f\right)^{2}-\left(P^{-} f\right)^{2}\right\|_{2}^{2} \\
=\left\|f\left(P^{+} f-P^{-} f\right)\right\|_{2}^{2} \leq\|f\|_{\infty}^{2}\|f\|_{2}^{2} \leq\|f\|_{\infty}^{4}
\end{gathered}
$$

This estimate implies that $\left\|P^{+}\right\|_{\infty, 4}=1$. Since the mapping $p \rightarrow\left\|P^{+}\right\|_{\infty, p}$ is nondecreasing, we conclude that $\left\|P^{+}\right\|_{\infty, p}=1$ for $p \leq 4$.
We have to show that $\left\|P^{+}\right\|_{\infty, p}>1$ for $p>4$.

Let $0<\varepsilon<1 / 2$. J.Marzo and K. Seip define the function

$$
f(x)=\left(1-\varepsilon e^{i x}\right)^{2} /\left|1-\varepsilon e^{i x}\right|^{2}
$$

Clearly, $\|f\|_{p}=1$ It is possible to show that $P^{+} f(x)=1-\varepsilon^{2}-\varepsilon e^{i x}$. Next, one can use the power series expansion:

$$
\left\|P^{+} f\right\|_{p}^{p}=1+\left(\frac{p^{2}}{4}-p\right) \varepsilon^{2}+O\left(\varepsilon^{4}\right)
$$

when $\varepsilon \rightarrow 0+$. This gives $\left\|P^{+} f\right\|_{p}>1$ by choosing ε sufficiently small.

It is possible to get the equality $\left\|P^{+}\right\|_{q, p}=1$ for some other pairs $(p, q), q>p>2$. Indeed, we know that $\left\|P^{+}\right\|_{2,2}=1$ and $\left\|P^{+}\right\|_{\infty, 4}=1$. Denote $q_{0}=2, p_{0}=2, q_{1}=\infty, p_{1}=4$. Using the Riesz-Thorin interpolation theorem, we conclude that for any $\alpha \in(0,1)$ and p, q given by the equalities

$$
\begin{gathered}
\frac{1}{p}=\alpha \frac{1}{p_{0}}+(1-\alpha) \frac{1}{p_{1}}=\frac{1+\alpha}{4} \\
\frac{1}{q}=\alpha \frac{1}{q_{0}}+(1-\alpha) \frac{1}{q_{1}}=\frac{\alpha}{2}
\end{gathered}
$$

we have $\left\|P^{+}\right\|_{q, p} \leq 1$ implying $\left\|P^{+}\right\|_{q, p}=1$. In particular,

$$
\begin{equation*}
\left\|P^{+}\right\|_{4,8 / 3}=1 \tag{1}
\end{equation*}
$$

The multidimensional case

Also, J. Marzo and K. Seip (2011) study functions of n variables defined on \mathbb{T}^{n}. For $\mathbf{x} \in \mathbb{T}^{n}$ we write $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. We use similar nonation for other variables, e.g. $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)$. Also, denote $d \mu_{j}=d x_{j} /(2 \pi)$. We define the n-dimensional probability measure on \mathbb{T}^{n} :

$$
d \mu^{(n)}=d x_{1} \ldots d x_{n} /(2 \pi)^{n} .
$$

The spaces $L^{p}\left(\mathbb{T}^{n}\right)$ and the decomposition of functions $f \in L\left(\mathbb{T}^{n}\right)$ into the trigonometric Fourier series are defined in a natural way.

The multidimensional case

Also, J. Marzo and K. Seip (2011) study functions of n variables defined on \mathbb{T}^{n}. For $\mathbf{x} \in \mathbb{T}^{n}$ we write $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. We use similar nonation for other variables, e.g. $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)$. Also, denote $d \mu_{j}=d x_{j} /(2 \pi)$. We define the n-dimensional probability measure on \mathbb{T}^{n} :

$$
d \mu^{(n)}=d x_{1} \ldots d x_{n} /(2 \pi)^{n} .
$$

The spaces $L^{p}\left(\mathbb{T}^{n}\right)$ and the decomposition of functions $f \in L\left(\mathbb{T}^{n}\right)$ into the trigonometric Fourier series are defined in a natural way. For a function $f \in L\left(\mathbb{T}^{n}\right)$ we can try to define

$$
P_{n}^{+} f=\sum_{\mathbf{k} \in \mathbb{Z}_{+}^{n}} \hat{f}(\mathbf{k}) e^{i \mathbf{k x}},
$$

The function $P_{n}^{+} f$ is well-defined for $f \in L^{p}\left(\mathbb{T}^{n}\right), p>1$ since the theorem of M. Riesz can be extended to \mathbb{T}^{n}.

Again, for $2 \leq p \leq q, p<\infty$, we denote by $\left\|P_{n}^{+}\right\|_{q, p}$ the norm of the operator $P_{n}^{+}: L^{q}\left(\mathbb{T}^{n}\right) \rightarrow L^{p}\left(\mathbb{T}^{n}\right)$. As we have noticed for the case $n=1,1 \leq\left\|P_{n}^{+}\right\|_{q, p}<\infty$.

Again, for $2 \leq p \leq q, p<\infty$, we denote by $\left\|P_{n}^{+}\right\|_{q, p}$ the norm of the operator $P_{n}^{+}: L^{q}\left(\mathbb{T}^{n}\right) \rightarrow L^{p}\left(\mathbb{T}^{n}\right)$. As we have noticed for the case $n=1,1 \leq\left\|P_{n}^{+}\right\|_{q, p}<\infty$.
We observe that if we restrict the operator P_{n}^{+}on the subspace of $L^{q}\left(\mathbb{T}^{n}\right)$ formed by the functions not depending on x_{n} then we get an operator with the norm $\left\|P_{n-1}^{+}\right\|_{q, p}$. This shows that the mapping $n \rightarrow\left\|P_{n}^{+}\right\|_{q, p}$ is nondecreasing.

Again, for $2 \leq p \leq q, p<\infty$, we denote by $\left\|P_{n}^{+}\right\|_{q, p}$ the norm of the operator $P_{n}^{+}: L^{q}\left(\mathbb{T}^{n}\right) \rightarrow L^{p}\left(\mathbb{T}^{n}\right)$. As we have noticed for the case $n=1,1 \leq\left\|P_{n}^{+}\right\|_{q, p}<\infty$.
We observe that if we restrict the operator P_{n}^{+}on the subspace of $L^{q}\left(\mathbb{T}^{n}\right)$ formed by the functions not depending on x_{n} then we get an operator with the norm $\left\|P_{n-1}^{+}\right\|_{q, p}$. This shows that the mapping $n \rightarrow\left\|P_{n}^{+}\right\|_{q, p}$ is nondecreasing.
Also, the mapping $p \rightarrow\left\|P_{n}^{+}\right\|_{q, p}$ is nondecreasing. Moreover, it is not difficult to deduce from Hőlder's inequality that the last mapping is continuous (and even locally Lipshitzian).
J. Marzo and K. Seip consider the number

$$
p_{n}=\sup \left\{p:\left\|P_{n}^{+}\right\|_{\infty, p}=1\right\} .
$$

This number was called the critical exponent by T. Fiegel, T. Iwaniec, and A. Pelchynski (1984). Clearly, $p_{n} \geq 2$.
J. Marzo and K. Seip consider the number

$$
p_{n}=\sup \left\{p:\left\|P_{n}^{+}\right\|_{\infty, p}=1\right\} .
$$

This number was called the critical exponent by T. Fiegel, T. Iwaniec, and A. Pelchynski (1984). Clearly, $p_{n} \geq 2$. It follows from the previous discussion that $p_{n} \leq p_{n-1}$ for $n>1$. We know that $p_{1}=4$. Hence, $p_{n} \leq 4$ for any n. Since the mapping $p \rightarrow\left\|P_{n}^{+}\right\|_{\infty, p}$ is nondecreasing and continuous, the critical exponent has the following property: $\mid P_{n}^{+} \|_{\infty, p}=1$ if $2 \leq p \leq p_{n}$ and $\mid P_{n}^{+} \|_{\infty, p}>1$ if $p>p_{n}$.
J. Marzo and K. Seip consider the number

$$
p_{n}=\sup \left\{p:\left\|P_{n}^{+}\right\|_{\infty, p}=1\right\} .
$$

This number was called the critical exponent by T. Fiegel, T. Iwaniec, and A. Pelchynski (1984). Clearly, $p_{n} \geq 2$. It follows from the previous discussion that $p_{n} \leq p_{n-1}$ for $n>1$. We know that $p_{1}=4$. Hence, $p_{n} \leq 4$ for any n. Since the mapping $p \rightarrow\left\|P_{n}^{+}\right\|_{\infty, p}$ is nondecreasing and continuous, the critical exponent has the following property: $\mid P_{n}^{+} \|_{\infty, p}=1$ if $2 \leq p \leq p_{n}$ and $\mid P_{n}^{+} \|_{\infty, p}>1$ if $p>p_{n}$.
For $n>1$ the exact value of p_{n} is unknown, and the gap between lower and upper estimates is rather large.
J. Marzo and K. Seip (2011) established the following inequality:

$$
p_{n} \geq 2+2 /\left(2^{n}-1\right) .
$$

Thus, $\left\|P_{n}^{+}\right\|_{\infty, p}=1$ for $p=2+2 /\left(2^{n}-1\right)$. This equality was proved by induction on n. For simplicity we will discuss the case $n=2$. For larger n the proof (of the induction step) is essentially the same.
J. Marzo and K. Seip (2011) established the following inequality:

$$
p_{n} \geq 2+2 /\left(2^{n}-1\right) .
$$

Thus, $\left\|P_{n}^{+}\right\|_{\infty, p}=1$ for $p=2+2 /\left(2^{n}-1\right)$. This equality was proved by induction on n. For simplicity we will discuss the case $n=2$. For larger n the proof (of the induction step) is essentially the same. One can consider partial Riesz projections. For $j=1, \ldots, n$ we denote

$$
P_{n, j}^{+} f=\sum_{\mathbf{k} \in \mathbb{Z}^{n}, k_{j} \geq 0} \hat{f}(\mathbf{k}) e^{i \mathbf{k x}},
$$

The routine technique using Fubini's theorem gives

$$
\begin{equation*}
\left\|P_{n, j}^{+}\right\|_{q, p}=\left\|P_{1}^{+}\right\|_{q, p} . \tag{2}
\end{equation*}
$$

The Riesz operator P_{2}^{+}is a composition of two partial Riesz operators $P_{2,1}^{+}$and $P_{2,2}^{+}$. By (2) and the one-dimensional result of J. Marzo and K. Seip,

$$
\left\|P_{2,1}^{+}\right\|_{\infty, 4}=\left\|P_{1}^{+}\right\|_{\infty, 4}=1
$$

Next, by (2) and (1),

$$
\left\|P_{2,2}^{+}\right\|_{4,8 / 3}=\left\|P_{1}^{+}\right\|_{4,8 / 3}=1
$$

Therefore,

$$
\left\|P_{2}^{+}\right\|_{\infty, 8 / 3} \leq\left\|P_{2,1}^{+}\right\|_{\infty, 4}\left\|P_{2,2}^{+}\right\|_{4,8 / 3}=1
$$

as required.

The infinite-dimensional case

We will consider functions of countably many variables. Let μ_{∞} denote Haar measure normalized so that $\mu_{\infty}\left(\mathbb{T}^{\infty}\right)=1$, and L^{p} be the corresponding L^{p} space. Again, any function $f \in L\left(\mathbb{T}^{\infty}\right)$ has the Fourier expansion

$$
f \sim \sum_{\mathbf{k}} \hat{f}(\mathbf{k}) e^{i \mathbf{k x}},
$$

where now the sum is taken over all $\mathbf{k}=\left(k_{1}, k_{2}, \ldots,\right)$ with integers k_{1}, k_{2}, \ldots, such that only finitely many of them are nonzero.

The infinite-dimensional case

We will consider functions of countably many variables. Let μ_{∞} denote Haar measure normalized so that $\mu_{\infty}\left(\mathbb{T}^{\infty}\right)=1$, and L^{p} be the corresponding L^{p} space. Again, any function $f \in L\left(\mathbb{T}^{\infty}\right)$ has the Fourier expansion

$$
f \sim \sum_{\mathbf{k}} \hat{f}(\mathbf{k}) e^{i \mathbf{k x}},
$$

where now the sum is taken over all $\mathbf{k}=\left(k_{1}, k_{2}, \ldots,\right)$ with integers k_{1}, k_{2}, \ldots, such that only finitely many of them are nonzero.
One of the reasons to study infinite-dimensional trigonometric series is their connection with generalized Dirichlet series. There is a natural way to associate with such an infinitely dimensional trigonometric series a Dirichlet series

$$
\sum_{r \in \mathbb{Q}, r>0} a_{r} r^{i t}
$$

Again, we define the Riesz operator P_{∞}^{+}, the norms $\left\|P_{\infty}^{+}\right\|_{q, p}$ and the critical exponent

$$
p_{\infty}=\sup \left\{p:\left\|P_{\infty}^{+}\right\|_{\infty, p}=1\right\} .
$$

Clearly, $\left\|P_{\infty}^{+}\right\|_{q, 2}=1$ for any $q \geq 2$. However, now we do not claim that $\left\|P_{\infty}^{+}\right\|_{q, p}<\infty$ for $2<p \leq q$, and we will see soon that this is not true.

Again, we define the Riesz operator P_{∞}^{+}, the norms $\left\|P_{\infty}^{+}\right\|_{q, p}$ and the critical exponent

$$
p_{\infty}=\sup \left\{p:\left\|P_{\infty}^{+}\right\|_{\infty, p}=1\right\}
$$

Clearly, $\left\|P_{\infty}^{+}\right\|_{q, 2}=1$ for any $q \geq 2$. However, now we do not claim that $\left\|P_{\infty}^{+}\right\|_{q, p}<\infty$ for $2<p \leq q$, and we will see soon that this is not true.
J. Marzo and K. Seip (2011) proved that

$$
p_{\infty}=\lim _{n \rightarrow \infty} p_{n}
$$

If it turns out that $p_{\infty}>2$, then, due to the Riesz interpolation theorem, there are p and $q, 2<p<q<\infty$, such that $\left\|P_{\infty}^{+}\right\|_{q, p}=1$. But J. Marzo and K. Seip (2011) established that if $p_{\infty}=2$, then $\left\|P_{\infty}^{+}\right\|_{q, p}=\infty$ for any $p>2$.

Our main result

S.K. , H. Queffeléc, E. Saksman, and K. Seip (2022) proved the following theorem.

Theorem

$$
\lim _{n \rightarrow \infty} p_{n}=2
$$

We know, that this theorem implies $p_{\infty}=2$. So, the Riesz projection P_{∞}^{+}on the infinite-dimensional torus is not bounded from L^{q} to L^{p} when $2<p<q \leq \infty$.
Let me discuss briefly the sketch of the proof.

A key ingredient is the estimate of the Dirichlet kernel associated with a finite-dimensional Euclidean ball. Let $d \geq 2, R>0$. We consider the Dirichlet kernel defined on \mathbb{T}^{d}

$$
D_{(}(R, d)(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{Z}^{d},\|\mathbf{k}\|_{2} \leq R} e^{i \mathbf{k} \mathbf{x}},
$$

where $\|\mathbf{k}\|_{2}$ denotes the Euclidean norm of a vector $\mathbf{k} \in \mathbb{Z}^{d}$. K.I. Babenko $(1971,2008)$ proved that for any $d \geq 2$ and $R>0$

$$
\begin{equation*}
\left\|D_{R, d}\right\|_{1} \geq C(d) R^{(d-1) / 2} \tag{3}
\end{equation*}
$$

where $C(d)>0$.

A key ingredient is the estimate of the Dirichlet kernel associated with a finite-dimensional Euclidean ball. Let $d \geq 2, R>0$. We consider the Dirichlet kernel defined on \mathbb{T}^{d}

$$
D_{(}(R, d)(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{Z}^{d},\|\mathbf{k}\|_{2} \leq R} e^{i \mathbf{k x}},
$$

where $\|\mathbf{k}\|_{2}$ denotes the Euclidean norm of a vector $\mathbf{k} \in \mathbb{Z}^{d}$. K.I. Babenko $(1971,2008)$ proved that for any $d \geq 2$ and $R>0$

$$
\begin{equation*}
\left\|D_{R, d}\right\|_{1} \geq C(d) R^{(d-1) / 2} \tag{3}
\end{equation*}
$$

where $C(d)>0$.
For any function $f \in L\left(\mathbb{T}^{d}\right)$ we can define its spherical partial sum of order R

$$
S_{R}(f)(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{Z}^{d},\|\mathbf{k}\|_{2} \leq R} \hat{f}(\mathbf{k}) e^{i \mathbf{k} \mathbf{x}} .
$$

Thus, for any $q \geq 1$ we have the operator $S_{R}: L^{q}\left(\mathbb{T}^{d}\right) \rightarrow L\left(\mathbb{T}^{d}\right)$.

Let $q>1, R \geq 1$. Consider a function

$$
f(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{Z}^{d}, \max _{j}\left|k_{j}\right| \leq R} e^{i \mathbf{k x}} .
$$

It is easy to see that

$$
\|f\|_{q} \leq C(d, q) R^{(q-1) d / q}
$$

Since $S_{R}(f)=D_{R, d}$, we conclude from the last inequality and (3) that

$$
\left\|S_{R}\right\|_{q}^{(d)} \geq C(d) C(q, d)^{-1} R^{(d-1) / 2-(q-1) d / q}
$$

where $\left\|S_{R}\right\|_{a^{(d)}}$ denotes the norm of the operator $S_{R}: L^{q}\left(\mathbb{T}^{d}\right) \rightarrow L\left(\mathbb{T}^{d}\right)$.

Let $q>1, R \geq 1$. Consider a function

$$
f(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{Z}^{d}, \max _{j}\left|k_{j}\right| \leq R} e^{i \mathbf{k x}} .
$$

It is easy to see that

$$
\|f\|_{q} \leq C(d, q) R^{(q-1) d / q}
$$

Since $S_{R}(f)=D_{R, d}$, we conclude from the last inequality and (3) that

$$
\left\|S_{R}\right\|_{q}^{(d)} \geq C(d) C(q, d)^{-1} R^{(d-1) / 2-(q-1) d / q}
$$

where $\left\|S_{R}\right\|_{q}^{(d)}$ denotes the norm of the operator $S_{R}: L^{q}\left(\mathbb{T}^{d}\right) \rightarrow L\left(\mathbb{T}^{d}\right)$. Let $q \in(1,2)$. Fix d with $d>2 q /(2-q)$.
Then $(d-1) / 2-(q-1) d / q>0$. For sufficiently large $R=R_{q, d}$ we have

$$
\begin{equation*}
\left\|S_{R}\right\|_{q}^{(d)}>1 \tag{4}
\end{equation*}
$$

Another important part of the proof is to show that inequality (4) implies

$$
\left\|P_{n}^{+}\right\|_{q, 1}>1
$$

for n depending on q and $R_{q, d}$. It is possible to write an explicit estimate of n, but we did not try to do it.

Another important part of the proof is to show that inequality (4) implies

$$
\left\|P_{n}^{+}\right\|_{q, 1}>1
$$

for n depending on q and $R_{q, d}$. It is possible to write an explicit estimate of n, but we did not try to do it. Let $p>2,1 / p+1 / q=1$. By duality arguments,

$$
\left\|P_{n}^{+}\right\|_{\infty, p}=\left\|P_{n}^{+}\right\|_{q, 1}>1 .
$$

Hence, $p_{n}<p$. Such a number n exists for any $p>2$ as required.

THANK YOU!

