On the norm of the Riesz projection from L^{∞} to L^p

Sergei Konyagin

January 11, 2024

Sergei Konyagin

On the norm of the Riesz projection from

January 11, 2024

The one-dimensional case

The talk is based on our joint paper with Hervé Queffeléc, Eero Saksman, and Kristian Seip.

The one-dimensional case

The talk is based on our joint paper with Hervé Queffeléc, Eero Saksman, and Kristian Seip.

Let $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$. We consider the normalized Lebesgue measure on \mathbb{T} : $d\mu = dx/(2\pi)$. Thus, $\mu(\mathbb{T}) = 1$. For $p \in [1, \infty)$, let $L^p(\mathbb{T})$ be the set of integrable functions $f : \mathbb{T} \to \mathbb{C}$ such that

$$\|f\|_{\rho}^{p}:=\int_{\mathbb{T}}|f|^{p}d\mu<\infty.$$

Also, let $L^{\infty}(\mathbb{T})$ be the space of essentially bounded functions $f : \mathbb{T} \to \mathbb{C}$. Next, for every function $f \in L(\mathbb{T}) := L^1(\mathbb{T})$ we define its trigonometric Fourier series

$$f\sim \sum_{k\in\mathbb{Z}} \hat{f}(k)e^{ikx},$$

where

 $\hat{f}(k) = \int_{\mathbb{T}} f(x) e^{-ikx} d\mu.$

On the norm of the Riesz projection from

2 / 20

For a function $f \in L(\mathbb{T})$ we can try to define

$$P^+f=\sum_{k\in\mathbb{Z}_+}\hat{f}(k)e^{ikx},$$

The function P^+f is well-defined for $f \in L^p(\mathbb{T})$, p > 1. Actually, P^+f can be defined for any $f \in L(\mathbb{T})$, but in general it is not an integrable function. If $1 , then, by the classical theorem of M. Riesz, the operator <math>P^+$ is bounded as an operator $L^p \to L^p$.

For a function $f \in L(\mathbb{T})$ we can try to define

$$P^+f=\sum_{k\in\mathbb{Z}_+}\hat{f}(k)e^{ikx},$$

The function P^+f is well-defined for $f \in L^p(\mathbb{T})$, p > 1. Actually, P^+f can be defined for any $f \in L(\mathbb{T})$, but in general it is not an integrable function. If $1 , then, by the classical theorem of M. Riesz, the operator <math>P^+$ is bounded as an operator $L^p \to L^p$. Clearly, for p = 2 the norm of this operator is 1. B. Hollenbeck and I.E. Verbitsky (2000) proved that for any $p \in (1, \infty)$ the norm is $1/\sin(\pi/p)$. We observe that this is greater than 1 if $p \neq 2$. For $2 \leq p, q \leq \infty$ we denote by $||P^+||_{q,p}$ the norm of the operator $P^+: L^q(\mathbb{T}) \to L^p(\mathbb{T})$. It is easy to see that $||P^+||_{q,p} = \infty$ if p > q or $p = q = \infty$. We will assume that $2 \leq p \leq q$ and $p < \infty$. Since $||f||_q \geq ||f||_p$, we get

$$||P^+||_{q,p} \le ||P^+||_{p,p} < \infty.$$

In particular, $||P^+||_{q,2} \leq 1$. Since always $||P^+||_{q,p} \geq 1$, we conclude that $||P^+||_{q,2} = 1$ for any $q \geq 2$.

For $2 \le p, q \le \infty$ we denote by $||P^+||_{q,p}$ the norm of the operator $P^+: L^q(\mathbb{T}) \to L^p(\mathbb{T})$. It is easy to see that $||P^+||_{q,p} = \infty$ if p > q or $p = q = \infty$. We will assume that $2 \le p \le q$ and $p < \infty$. Since $||f||_q \ge ||f||_p$, we get

$$||P^+||_{q,p} \le ||P^+||_{p,p} < \infty.$$

In particular, $||P^+||_{q,2} \leq 1$. Since always $||P^+||_{q,p} \geq 1$, we conclude that $||P^+||_{q,2} = 1$ for any $q \geq 2$. Although we know that $||P^+||_{p,p} > 1$ for any p > 2, it can happen that $||P^+||_{q,p} = 1$ for some q > p > 2. It was a nice question for which $p \geq 2$ the equality $||P^+||_{\infty,p} = 1$ holds. The answer was given by J. Marzo and K. Seip (2011). They showed that $||P^+||_{\infty,p} = 1$ for $p \leq 4$ and $||P^+||_{\infty,p} > 1$ for p > 4. Let p = 4. We write $P^- = I - P^+$ where I is the identity operator. Thus,

$$P^{-}f=\sum_{-k\in\mathbb{N}}\hat{f}(k)e^{ikx},$$

We have $(P^+f)^2 \perp (P^-f)^2$ whenever f is a bounded function on \mathbb{T} . Therefore,

$$\begin{split} \|P^+f\|_4^4 &= \|(P^+f)^2\|_2^2 \leq \|(P^+f)^2 - (P^-f)^2\|_2^2 \\ &= \|f(P^+f - P^-f)\|_2^2 \leq \|f\|_\infty^2 \|f\|_2^2 \leq \|f\|_\infty^4. \end{split}$$

Let p = 4. We write $P^- = I - P^+$ where I is the identity operator. Thus,

$$\mathsf{P}^-f = \sum_{-k\in\mathbb{N}} \hat{f}(k) e^{ikx},$$

We have $(P^+f)^2 \perp (P^-f)^2$ whenever f is a bounded function on \mathbb{T} . Therefore,

$$\begin{split} \|P^+f\|_4^4 &= \|(P^+f)^2\|_2^2 \leq \|(P^+f)^2 - (P^-f)^2\|_2^2 \\ &= \|f(P^+f - P^-f)\|_2^2 \leq \|f\|_\infty^2 \|f\|_2^2 \leq \|f\|_\infty^4. \end{split}$$

This estimate implies that $||P^+||_{\infty,4} = 1$. Since the mapping $p \to ||P^+||_{\infty,p}$ is nondecreasing, we conclude that $||P^+||_{\infty,p} = 1$ for $p \le 4$.

Let p = 4. We write $P^- = I - P^+$ where I is the identity operator. Thus,

$$\mathsf{P}^-f = \sum_{-k\in\mathbb{N}} \hat{f}(k) e^{ikx},$$

We have $(P^+f)^2 \perp (P^-f)^2$ whenever f is a bounded function on \mathbb{T} . Therefore,

$$\begin{split} \|P^+f\|_4^4 &= \|(P^+f)^2\|_2^2 \leq \|(P^+f)^2 - (P^-f)^2\|_2^2 \\ &= \|f(P^+f - P^-f)\|_2^2 \leq \|f\|_\infty^2 \|f\|_2^2 \leq \|f\|_\infty^4. \end{split}$$

This estimate implies that $||P^+||_{\infty,4} = 1$. Since the mapping $p \to ||P^+||_{\infty,p}$ is nondecreasing, we conclude that $||P^+||_{\infty,p} = 1$ for $p \le 4$. We have to show that $||P^+||_{\infty,p} > 1$ for p > 4. Let $0 < \varepsilon < 1/2$. J.Marzo and K. Seip define the function

$$f(x) = (1 - \varepsilon e^{ix})^2 / |1 - \varepsilon e^{ix}|^2.$$

Clearly, $||f||_p = 1$ It is possible to show that $P^+f(x) = 1 - \varepsilon^2 - \varepsilon e^{ix}$. Next, one can use the power series expansion:

$$\|P^+f\|_p^p = 1 + \left(\frac{p^2}{4} - p\right)\varepsilon^2 + O(\varepsilon^4)$$

when $\varepsilon \to 0+$. This gives $\|P^+f\|_p > 1$ by choosing ε sufficiently small.

It is possible to get the equality $||P^+||_{q,p} = 1$ for some other pairs (p,q), q > p > 2. Indeed, we know that $||P^+||_{2,2} = 1$ and $||P^+||_{\infty,4} = 1$. Denote $q_0 = 2, p_0 = 2, q_1 = \infty, p_1 = 4$. Using the Riesz-Thorin interpolation theorem, we conclude that for any $\alpha \in (0,1)$ and p, q given by the equalities

$$\frac{1}{p} = \alpha \frac{1}{p_0} + (1 - \alpha) \frac{1}{p_1} = \frac{1 + \alpha}{4},$$
$$\frac{1}{q} = \alpha \frac{1}{q_0} + (1 - \alpha) \frac{1}{q_1} = \frac{\alpha}{2},$$

we have $\|P^+\|_{q,p} \leq 1$ implying $\|P^+\|_{q,p} = 1$. In particular,

$$\|P^+\|_{4,8/3} = 1. \tag{1}$$

The multidimensional case

Also, J. Marzo and K. Seip (2011) study functions of *n* variables defined on \mathbb{T}^n . For $\mathbf{x} \in \mathbb{T}^n$ we write $\mathbf{x} = (x_1, \ldots, x_n)$. We use similar nonation for other variables, e.g. $\mathbf{k} = (k_1, \ldots, k_n)$. Also, denote $d\mu_j = dx_j/(2\pi)$. We define the *n*-dimensional probability measure on \mathbb{T}^n :

$$d\mu^{(n)}=dx_1\ldots dx_n/(2\pi)^n.$$

The spaces $L^{p}(\mathbb{T}^{n})$ and the decomposition of functions $f \in L(\mathbb{T}^{n})$ into the trigonometric Fourier series are defined in a natural way.

The multidimensional case

Also, J. Marzo and K. Seip (2011) study functions of *n* variables defined on \mathbb{T}^n . For $\mathbf{x} \in \mathbb{T}^n$ we write $\mathbf{x} = (x_1, \ldots, x_n)$. We use similar nonation for other variables, e.g. $\mathbf{k} = (k_1, \ldots, k_n)$. Also, denote $d\mu_j = dx_j/(2\pi)$. We define the *n*-dimensional probability measure on \mathbb{T}^n :

$$d\mu^{(n)}=dx_1\ldots dx_n/(2\pi)^n.$$

The spaces $L^{p}(\mathbb{T}^{n})$ and the decomposition of functions $f \in L(\mathbb{T}^{n})$ into the trigonometric Fourier series are defined in a natural way. For a function $f \in L(\mathbb{T}^{n})$ we can try to define

$$P_n^+ f = \sum_{\mathbf{k} \in \mathbb{Z}_+^n} \hat{f}(\mathbf{k}) e^{i\mathbf{k}\mathbf{x}},$$

The function $P_n^+ f$ is well-defined for $f \in L^p(\mathbb{T}^n)$, p > 1 since the theorem of M. Riesz can be extended to \mathbb{T}^n .

Sergei Konyagin

Again, for $2 \le p \le q$, $p < \infty$, we denote by $||P_n^+||_{q,p}$ the norm of the operator P_n^+ : $L^q(\mathbb{T}^n) \to L^p(\mathbb{T}^n)$. As we have noticed for the case $n = 1, 1 \le ||P_n^+||_{q,p} < \infty$.

Again, for $2 \le p \le q$, $p < \infty$, we denote by $||P_n^+||_{q,p}$ the norm of the operator P_n^+ : $L^q(\mathbb{T}^n) \to L^p(\mathbb{T}^n)$. As we have noticed for the case $n = 1, 1 \le ||P_n^+||_{q,p} < \infty$.

We observe that if we restrict the operator P_n^+ on the subspace of $L^q(\mathbb{T}^n)$ formed by the functions not depending on x_n then we get an operator with the norm $\|P_{n-1}^+\|_{q,p}$. This shows that the mapping $n \to \|P_n^+\|_{q,p}$ is nondecreasing.

Again, for $2 \le p \le q$, $p < \infty$, we denote by $||P_n^+||_{q,p}$ the norm of the operator P_n^+ : $L^q(\mathbb{T}^n) \to L^p(\mathbb{T}^n)$. As we have noticed for the case $n = 1, 1 \le ||P_n^+||_{q,p} < \infty$.

We observe that if we restrict the operator P_n^+ on the subspace of $L^q(\mathbb{T}^n)$ formed by the functions not depending on x_n then we get an operator with the norm $\|P_{n-1}^+\|_{q,p}$. This shows that the mapping $n \to \|P_n^+\|_{q,p}$ is nondecreasing.

Also, the mapping $p \to \|P_n^+\|_{q,p}$ is nondecreasing. Moreover, it is not difficult to deduce from Hőlder's inequality that the last mapping is continuous (and even locally Lipshitzian).

J. Marzo and K. Seip consider the number

$$p_n = \sup\{p : \|P_n^+\|_{\infty,p} = 1\}.$$

This number was called the critical exponent by T. Fiegel, T. Iwaniec, and A. Pelchynski (1984). Clearly, $p_n \ge 2$.

J. Marzo and K. Seip consider the number

$$p_n = \sup\{p: \|P_n^+\|_{\infty,p} = 1\}.$$

This number was called the critical exponent by T. Fiegel, T. Iwaniec, and A. Pelchynski (1984). Clearly, $p_n \ge 2$. It follows from the previous discussion that $p_n \le p_{n-1}$ for n > 1. We know that $p_1 = 4$. Hence, $p_n \le 4$ for any n. Since the mapping $p \to ||P_n^+||_{\infty,p}$ is nondecreasing and continuous, the critical exponent has the following property: $|P_n^+||_{\infty,p} = 1$ if $2 \le p \le p_n$ and $|P_n^+||_{\infty,p} > 1$ if $p > p_n$. J. Marzo and K. Seip consider the number

$$p_n = \sup\{p: \|P_n^+\|_{\infty,p} = 1\}.$$

This number was called the critical exponent by T. Fiegel, T. Iwaniec, and A. Pelchynski (1984). Clearly, $p_n \ge 2$. It follows from the previous discussion that $p_n \le p_{n-1}$ for n > 1. We know that $p_1 = 4$. Hence, $p_n \le 4$ for any n. Since the mapping $p \to ||P_n^+||_{\infty,p}$ is nondecreasing and continuous, the critical exponent has the following property: $|P_n^+||_{\infty,p} = 1$ if $2 \le p \le p_n$ and $|P_n^+||_{\infty,p} > 1$ if $p > p_n$. For n > 1 the exact value of p_n is unknown, and the gap between lower and upper estimates is rather large. J. Marzo and K. Seip (2011) established the following inequality:

$$p_n \ge 2 + 2/(2^n - 1).$$

Thus, $||P_n^+||_{\infty,p} = 1$ for $p = 2 + 2/(2^n - 1)$. This equality was proved by induction on *n*. For simplicity we will discuss the case n = 2. For larger *n* the proof (of the induction step) is essentially the same. J. Marzo and K. Seip (2011) established the following inequality:

$$p_n \ge 2 + 2/(2^n - 1).$$

Thus, $||P_n^+||_{\infty,p} = 1$ for $p = 2 + 2/(2^n - 1)$. This equality was proved by induction on *n*. For simplicity we will discuss the case n = 2. For larger *n* the proof (of the induction step) is essentially the same. One can consider partial Riesz projections. For j = 1, ..., n we denote

$$P^+_{n,j}f = \sum_{\mathbf{k}\in\mathbb{Z}^n,k_j\geq 0} \hat{f}(\mathbf{k})e^{i\mathbf{k}\mathbf{x}},$$

The routine technique using Fubini's theorem gives

$$\|P_{n,j}^+\|_{q,p} = \|P_1^+\|_{q,p}.$$
(2)

11/20

The Riesz operator P_2^+ is a composition of two partial Riesz operators $P_{2,1}^+$ and $P_{2,2}^+$. By (2) and the one-dimensional result of J. Marzo and K. Seip,

$$\|P_{2,1}^+\|_{\infty,4} = \|P_1^+\|_{\infty,4} = 1.$$

Next, by (2) and (1),

$$\|P_{2,2}^+\|_{4,8/3} = \|P_1^+\|_{4,8/3} = 1.$$

Therefore,

$$\|P_2^+\|_{\infty,8/3} \le \|P_{2,1}^+\|_{\infty,4}\|P_{2,2}^+\|_{4,8/3} = 1,$$

as required.

The infinite-dimensional case

We will consider functions of countably many variables. Let μ_{∞} denote Haar measure normalized so that $\mu_{\infty}(\mathbb{T}^{\infty}) = 1$, and L^{p} be the corresponding L^{p} space. Again, any function $f \in L(\mathbb{T}^{\infty})$ has the Fourier expansion

$$f\sim \sum_{\mathbf{k}}\hat{f}(\mathbf{k})e^{i\mathbf{k}\mathbf{x}},$$

where now the sum is taken over all $\mathbf{k} = (k_1, k_2, ...,)$ with integers $k_1, k_2, ...,$ such that only finitely many of them are nonzero.

The infinite-dimensional case

We will consider functions of countably many variables. Let μ_{∞} denote Haar measure normalized so that $\mu_{\infty}(\mathbb{T}^{\infty}) = 1$, and L^{p} be the corresponding L^{p} space. Again, any function $f \in L(\mathbb{T}^{\infty})$ has the Fourier expansion

$$f\sim \sum_{f k} \hat{f}(f k) e^{if k {f x}},$$

where now the sum is taken over all $\mathbf{k} = (k_1, k_2, \dots,)$ with integers k_1, k_2, \dots , such that only finitely many of them are nonzero. One of the reasons to study infinite-dimensional trigonometric series is their connection with generalized Dirichlet series. There is a natural way to associate with such an infinitely dimensional trigonometric series a Dirichlet series

$$\sum_{r\in\mathbb{Q},\,r>0}a_rr^{it}.$$

January 11, 2024

Again, we define the Riesz operator P^+_∞ , the norms $\|P^+_\infty\|_{q,p}$ and the critical exponent

$$p_{\infty} = \sup\{p: \|P_{\infty}^+\|_{\infty,p} = 1\}.$$

Clearly, $\|P_{\infty}^+\|_{q,2} = 1$ for any $q \ge 2$. However, now we do not claim that $\|P_{\infty}^+\|_{q,p} < \infty$ for 2 , and we will see soon that this is not true.

Again, we define the Riesz operator P^+_∞ , the norms $\|P^+_\infty\|_{q,p}$ and the critical exponent

$$p_{\infty} = \sup\{p: \|P_{\infty}^+\|_{\infty,p} = 1\}.$$

Clearly, $\|P_{\infty}^+\|_{q,2} = 1$ for any $q \ge 2$. However, now we do not claim that $\|P_{\infty}^+\|_{q,p} < \infty$ for 2 , and we will see soon that this is not true.

J. Marzo and K. Seip (2011) proved that

$$p_{\infty} = \lim_{n \to \infty} p_n.$$

If it turns out that $p_{\infty} > 2$, then, due to the Riesz interpolation theorem, there are p and q, $2 , such that <math>||P_{\infty}^+||_{q,p} = 1$. But J. Marzo and K. Seip (2011) established that if $p_{\infty} = 2$, then $||P_{\infty}^+||_{q,p} = \infty$ for any p > 2.

January 11, 2024

 $\mathsf{S}.\mathsf{K}.$, H. Queffeléc, E. Saksman, and K. Seip (2022) proved the following theorem.

Theorem

$$\lim_{n\to\infty}p_n=2.$$

We know, that this theorem implies $p_{\infty} = 2$. So, the Riesz projection P_{∞}^+ on the infinite-dimensional torus is not bounded from L^q to L^p when 2 .Let me discuss briefly the sketch of the proof. A key ingredient is the estimate of the Dirichlet kernel associated with a finite-dimensional Euclidean ball. Let $d \ge 2$, R > 0. We consider the Dirichlet kernel defined on \mathbb{T}^d

$$D_{(R,d)}(\mathbf{x}) = \sum_{\mathbf{k}\in\mathbb{Z}^{d},\,\|\mathbf{k}\|_{2}\leq R} e^{i\mathbf{k}\mathbf{x}},$$

where $\|\mathbf{k}\|_2$ denotes the Euclidean norm of a vector $\mathbf{k} \in \mathbb{Z}^d$. K.I. Babenko (1971, 2008) proved that for any $d \ge 2$ and R > 0

$$\|D_{R,d}\|_1 \ge C(d)R^{(d-1)/2},$$
 (3)

where C(d) > 0.

A key ingredient is the estimate of the Dirichlet kernel associated with a finite-dimensional Euclidean ball. Let $d \ge 2$, R > 0. We consider the Dirichlet kernel defined on \mathbb{T}^d

$$D_{(R,d)}(\mathbf{x}) = \sum_{\mathbf{k}\in\mathbb{Z}^{d},\,\|\mathbf{k}\|_{2}\leq R} e^{i\mathbf{k}\mathbf{x}},$$

where $\|\mathbf{k}\|_2$ denotes the Euclidean norm of a vector $\mathbf{k} \in \mathbb{Z}^d$. K.I. Babenko (1971, 2008) proved that for any $d \ge 2$ and R > 0

$$\|D_{R,d}\|_1 \ge C(d)R^{(d-1)/2},$$
 (3)

where C(d) > 0. For any function $f \in L(\mathbb{T}^d)$ we can define its spherical partial sum of order R

$$\mathcal{S}_R(f)(\mathsf{x}) = \sum_{\mathsf{k}\in\mathbb{Z}^d,\,\|\mathsf{k}\|_2\leq R} \widehat{f}(\mathsf{k})e^{i\mathsf{k}\mathsf{x}}.$$

Thus, for any $q \ge 1$ we have the operator $S_R : L^q(\mathbb{T}^d) \xrightarrow{} L(\mathbb{T}^d)$

Let q > 1, $R \ge 1$. Consider a function

$$f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{Z}^d, \max_i |k_i| \leq R} e^{i\mathbf{k}\mathbf{x}}.$$

It is easy to see that

$$\|f\|_q \leq C(d,q)R^{(q-1)d/q}.$$

Since $S_R(f) = D_{R,d}$, we conclude from the last inequality and (3) that $\|S_R\|_q^{(d)} \ge C(d)C(q,d)^{-1}R^{(d-1)/2-(q-1)d/q}$,

where $||S_R||_q^{(d)}$ denotes the norm of the operator $S_R : L^q(\mathbb{T}^d) \to L(\mathbb{T}^d).$

Let q > 1, $R \ge 1$. Consider a function

$$f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{Z}^d, \max_j |k_j| \leq R} e^{i\mathbf{k}\mathbf{x}}.$$

It is easy to see that

$$\|f\|_q \leq C(d,q)R^{(q-1)d/q}.$$

Since $S_R(f) = D_{R,d}$, we conclude from the last inequality and (3) that

$$\|S_R\|_q^{(d)} \ge C(d)C(q,d)^{-1}R^{(d-1)/2-(q-1)d/q},$$

where $||S_R||_q^{(d)}$ denotes the norm of the operator $S_R: L^q(\mathbb{T}^d) \to L(\mathbb{T}^d)$. Let $q \in (1,2)$. Fix d with d > 2q/(2-q). Then (d-1)/2 - (q-1)d/q > 0. For sufficiently large $R = R_{q,d}$ we have

$$\|S_R\|_q^{(d)} > 1.$$
 (4)

Another important part of the proof is to show that inequality (4) implies

$$\|P_n^+\|_{q,1} > 1$$

for *n* depending on *q* and $R_{q,d}$. It is possible to write an explicit estimate of *n*, but we did not try to do it.

Another important part of the proof is to show that inequality (4) implies

$$||P_n^+||_{q,1} > 1$$

for *n* depending on *q* and $R_{q,d}$. It is possible to write an explicit estimate of *n*, but we did not try to do it. Let p > 2, 1/p + 1/q = 1. By duality arguments,

$$||P_n^+||_{\infty,p} = ||P_n^+||_{q,1} > 1.$$

Hence, $p_n < p$. Such a number *n* exists for any p > 2 as required.

Sergei Konyagin

On the norm of the Riesz projection from

< □ > < 금 > < 글 > < 글 >
 Fom January 11, 2024

THANK YOU!

Image: A matrix

| ▲ 문 ▶ | ▲ 문 ▶

Ξ.