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Basics
... some algebras

Some algebras associated to an operator.

Let T be a Hilbert space operator.

1. Set Alg(T) the algebra generated by T and the identity,
2. {T}′ = {A : AT = TA} the commutant of T.

3. {T}′′ = {B : BA = AB : A ∈ {T}′} the double commutant
of T.

Alg(T)WOT ⊂ {T}′′ ⊂ {T}′
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Basics
... Von Neumann’s theorem

Von Neumann

Let T be a Hilbert space selftadjoint operator then

Alg(T)WOT
= {T}′′
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Basics
... double commutant property

Von Neumann

Let T be a Hilbert space operator. We say that T has the double
commutant property if

Alg(T)WOT
= {T}′′
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Basics
... main question

1970s

Let T be a Hilbert space operator. When T has the double commutant
property?

DCP

The commutant
is too small

The commutant
is too big
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Basics
... the size of the commutant

Minimal commutant property (MCP)

Let T be a Hilbert space operator. We say that T has the minimal
commutant property if

Alg(T)WOT
= {T}′
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Basics
... the size of the commutant

Fact

1. If T has the MCP then Alg(T)WOT
= {T}′′ = {T}′.

2. If {T}′ "increases" then {T}′′ decreases. For big commutants
we have also the DCP.
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Basics
... double commutant property, origin

Commutants
and bicom-
mutants

The invariant
subspace
problem

Quantum
mechanics, free
probability, etc.
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Basics
... double commutant property, origin

Victor Lomonosov Theorem (1973)

Assume that T is a Banach space operator that commute with an
operator A, and such that A also commutes with a non-trivial
compact operator. Then T has a non-trivial invariant subspace.

Question

Is there a non-trivial operator which does not satisfy the Lomonosov
hypothesis?
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Basics
...analytic Toeplitz operators

1. H2(D) =
{︀
f(z) =

∑︀
n anzn ∈ H(D) :

∑︀
n |an|2 <∞

}︀
2. Mzf(z) = zf(z).

3. {Mz}′ = {Mϕ : ϕ ∈ H∞};Mϕf(z)(z) = ϕ(z)f(z)

4. Cowen:Mz satisfies Lomonosov Hypothesis.

10/33



Basics
....Hadwin, Nordgren, Radjavi, Rosenthal.

Figure: σ(D) strictly starlike with respect to the origin.
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Questions
...analytic Toeplitz operators

1. Given φ ∈ H∞(D) describe {Mφ}′.

2. (Turner 1971) For which maps φ; {Mφ}′′ is minimal?

3. For which maps φ, {Mφ}′ is minimal?
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Selected background
...analytic Toeplitz operators

1. Cowen-1980.Mz satisfies Lomonosov hypothesis.

2. Turner-1972 If T is algebraic then T has the DCP.

3. Turner-1971 A normal operator has the DCP if and only if each
invariant subspace of T is invariant under T⋆.

4. Abrahamse-Cowen-Deddens-Turner-Thomson’70s They
characterized the commutant of several analytic Toeplitz
operators.
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Analytic Toeplitz operators
...with a minimal commutant

Shields and Wallen (1970/71)

If φ ∈ H∞(D) is univalent then {Mφ}′ = {Mz}′. That is,

{Mφ}
′ = {Mϕ : ϕ ∈ H∞(D)}

M.J.González-L.

If φ is not univalent in H∞(D) thenMφ don’t have a minimal
commutant.
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Analytic Toeplitz operators
Toeplitz minimal commutant’s theorem

M.J. González- L.

Set φ ∈ H∞(D). The following conditions are equivalents:

1. Mφ has a minimal commutant.

2. The polynomials on φ are dense in H2(D).
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Analytic Toeplitz operators
Toeplitz minimal commutant’s theorem

Facts

If the polynomials on φ are dense in H2(D) then

1. φmust be univalent.

2. Then φmust be univalent almost every where on ∂D, that is,
there exists a set S ⊂ ∂D of zero Lebesgue measure such that φ
is univalent on ∂D \ S.
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Analytic Toeplitz operators
Toeplitz minimal commutant’s theorem

Example

Figure: σ maps univalently D onto a slit disk.
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Analytic Toeplitz operators
Toeplitz minimal commutant’s theorem

Facts

For instance, if φmaps U univalently onto G, and G is a simply
connected domain whose boundary is a Jordan curve, Walsh’s
Theorem asserts that the polynomials in φ are dense in H2(D).
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Analytic Toeplitz operators
Toeplitz minimal commutant’s theorem

Example

Figure: σ is univalent and the boundary of G = σ(D) is a Jordan curve.
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Analytic Toeplitz operators
Toeplitz minimal commutant’s theorem

Remarks

1. Mφ =Mφ−φ(0) + φ(0)I, that is, the commutant ofMφ is
invariant under translation. Also it is invariant under scalar
multiplications.

2. ϕ = φ−c
R , ϕ(D) ⊂ D.

3. Mφ has a minimal commutant if and only if for some c and R, Cϕ
is cyclic.
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Double commutant property
...univalent case

Univalent Case

Assume that φ ∈ H∞(D) is univalent. ThenMφ has the double
commutant property if and only if the polynomials in φ are dense in
H2(D).

Question

Is there a non-univalent map φ ∈ H∞(D) such thatMφ has the
double commutant property?
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Double commutant property
... non-univalent case

Deddens-Wong (1973)

Assume that φ ∈ H∞(D) single cover a non-empty neighbourhood
W of φ(D), then {Mφ}′ = {Mz}′.

M.J. González- L.

If φ ∈ H∞(D) is not univalent but φ single cover a non-empty
neighbourhoodW of φ(D), thenMφ don’t have the double
commutant property.
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Double commutant property
... non-univalent case

Example
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Figure: The cardioid map φ(z) = (z+ 1/2)2.Mφ not DCP.
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Double commutant property
... non-univalent case

By considering φ(z) = zn, n ≥ 2, the commutant ofMzn is very big.

Čučković (1994)

Čučković described the elements in the algebra of all Toeplitz
operators that commutes withMzn .

M.J. González-L

Mzn has the double commutant property.
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Double commutant property
... non-univalent case

f ∈ H∞(D) have radial limits f⋆(eiθ) = limr→1 f(reiθ) almost every
where on ∂D.

Inner function

f ∈ H∞(D) is called an inner function if |f⋆(eiθ)| = 1 almost
everywhere.

Turner (1971)

Turner proved that non-unitary isometries have the double
commutant property. In particular, if ϕ is inner, thenMφ has the
double commutant property.
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Double commutant property
... multiplication by entire functions

γ the unit circle {eit : 0 ≤ t ≤ 2π}. Set φ analytic on D, and
a /∈ f(γ). Denote n(φ(γ), a) the winding number of φ about γ and
we set

k(φ) = inf{n(φ(γ, a) : n(φ(γ), a) ̸= 0}.

Baker-Deddens-Ullman (1974)

If φ is a non-constant entire function and k = k(φ) then there exists
an entire function h such that φ(z) = h(zk) and k(h) = 1.

1. {Mφ}′ = {Mzk}′.

2. If φ(z) =
∑︀

anzn then k(φ) = g.c.d{n : an ̸= 0}.
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Double commutant property
... multiplication by entire functions

M.J. González-L.

Assume that φ is an entire function with k(φ) = k. If the image of a
point under φ has p > k = k(φ) preimages thenMφ does not have
the double commutant property.

M.J. González-L.

Assume that φ is an entire function with k(φ) = k. If there exists of a
point c ∈ φ(D) such that n(φ(γ), c) = p and p > k = k(φ) thenMφ

does not have the double commutant property.
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Double commutant property
... multiplication by entire functions

For θ ∈ H∞(D), let us denote Hθ =
⋁︀
{1, θ, θ2, · · ·}.

M.J. González-L.

Assume that φ is an entire function with k(φ) = k. The following
conditions are equivalents:

1. Mφ has the double commutant property.

2. The polynomials on φ are dense in Hzk
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Double commutant property
... multiplication by functions in the Thomson-Cowen’s class

Thomson-Cowen’s class: TC(D).

TC(D)) is the class of bounded analytic functions φ for which there
exists a point λ ∈ D such that the inner part of φ− φ(λ) is a finite
Blaschke product.

TC(D) contains all non-constant functions in H∞(D)

Thomson (1976)-Cowen(1978)

Assume φ ∈ TC(D). Then there exists a finite Blaschke product B
and a function h ∈ H∞(D) such that ϕ = h(B) and
{Mφ}′ = {MB}′.
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Double commutant property
... multiplication by functions in the Thomson-Cowen’s class

M.J. González-L.

Assume that ϕ ∈ TC(D), φ = h(B) for some h ∈ H∞(D) and B is a
finite Blascke product. Then the following conditions are equivalents:

1. Mφ has the double commutant property.

2. The polynomials on ϕ are dense in HB.

30/33



Double commutant property
... multiplication by functions in the Thomson-Cowen’s class

Example: σ maps univalently D onto a slit disk.

If B is a finite Blascke product, thenMσ(B) don’t have the double
commutant property.
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