Toeplitz operators and Bergman projections on weighted spaces of holomorphic functions.

Wolfgang Lusky

Joint work with J.Bonet and J.Taskinen (BLT).

1 Introduction

We consider the area measure dm = dxdy on \mathbb{C} and an open subset $O \subset \mathbb{C}$, (in the following mostly $O = \mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$). A weight v on O is a continuous map $O \rightarrow]0, \infty[$.

For measurable f on O put

$$\begin{split} ||f||_{v,p} &= \left(\int_{O} |f(z)|^{p} v(z) dm(z) \right)^{1/p} \text{ if } 1 \leq p < \infty, \\ ||f||_{v,\infty} &= \operatorname{ess\,sup}_{z \in O} |f(z)| v(z) \quad \text{and} \\ L_{v}^{p} &= \{f : O \to \mathbb{C} \text{ measurable} : ||f||_{v,p} < \infty\}, \\ H_{v}^{p} &= \{h \in L_{v}^{p} : h \text{ holomorphic} \}. \end{split}$$

For each $z_0 \in O$ there is a constant $c(z_0) > 0$ such that every $h \in H_v^2$ satisfies $|h(z_0)| \leq c(z_0)||h||_{v,2}$. Hence there is a unique $K_{z_0} \in H_v^2$ with

$$h(z_0) = \langle h, K_{z_0} \rangle_v := \int_O h(z) \overline{K_{z_0}(z)} v(z) dm(z),$$

called the *reproducing kernel*.

Let $P_v: L_v^2 \to H_v^2$ be the orthogonal projection, called *Bergman projection*, i.e.

$$P_v(g)(z_0) = \int_O g(z)\overline{K_{z_0}(z)}v(z)dm(z), \ z_0 \in O, \ g \in L^2_v.$$

For measurable f and holomorphic h let

$$T_{f}(h)(z_{0}) = P_{v}(fh)(z_{0}) = \int_{O} f(z)h(z)\overline{K_{z_{0}}(z)}v(z)dm(z)$$

be the *Toeplitz operator* whenever the preceding integral exists.

Questions:

- For which f and v is T_f a bounded operator $H_v^{\infty} \to H_v^{\infty}$?
- For which weights v, \tilde{v} and $1 \leq p \leq \infty$ is $P_{\tilde{v}}$ a bounded operator $L_v^p \to H_v^p$?

2 Toeplitz operators

2.1.Definition. A weight v on \mathbb{D} is a standard weight if $v(z) = v(|z|), z \in \mathbb{D}, v(s) \leq v(r)$ whenever $0 \leq r \leq s < 1$ and $\lim_{r \to 1} v(r) = 0$.

Examples for v(r), $0 \le r < 1$: $(1 - \log(1 - r))^{-1}$, $(1 - r)^{\gamma}$ for some $\gamma > 0$, $\exp(-\alpha(1 - r)^{-\beta})$ for some $\alpha, \beta > 0$.

For a standard weight v we obtain

$$K_{z_0}(z) = \frac{1}{2\pi} \sum_{k=0}^{\infty} \frac{z^j \bar{z}_0^j}{\int_0^1 r^{2j+1} v(r) dr}$$

In particular K_{z_0} is bounded and δ_{z_0} with $\delta_{z_0}(h) = h(z_0)$ is a bounded linear functional on H_v^{∞} , i.e. $\delta_{z_0} \in (H_v^{\infty})^*$.

2.2.Theorem. Let v be a standard weight on \mathbb{D} and let $f : \mathbb{D} \to \mathbb{C}$ be holomorphic. Then T_f is a bounded operator $H_v^{\infty} \to H_v^{\infty} \Leftrightarrow f$ is bounded. **Proof.** " \Leftarrow ": Here, for $h \in H_v^{\infty}$, $fh \in H_v^{\infty}$ and $||P_v(fh)||_{v,\infty} = ||fh||_{v,\infty} \leq \sup_z |f(z)| \cdot ||h||_{v,\infty}$. " \Rightarrow ": Here we have $T_f^* \delta_z = f(z) \delta_z$, i.e. $|f(z)| = ||T_f^*(\delta_z/||\delta_z||)|| \leq ||T_f^*|| = ||T_f|| < \infty, z \in \mathbb{D}$. \Box **2.3.Theorem.** There is a bounded harmonic function f on \mathbb{D} such that for NO standard weight v on \mathbb{D} the Toeplitz operator T_f is a bounded operator $H_v^{\infty} \to H_v^{\infty}$. Sketch of proof. Let

$$f(z) = \sum_{j=0}^{\infty} \frac{(-1)^j}{2j+1} (z^{2j+1} + \bar{z}^{2j+1}),$$

i.e. $f(e^{i\varphi}) = \begin{cases} \frac{\pi}{2}, & -\frac{\pi}{2} \le \varphi \le \frac{\pi}{2} \\ -\frac{\pi}{2}, & \text{else} \end{cases}$
Put $h_m(z) = \frac{z^{4m}}{||z^{4m}||_{v,\infty}} = \frac{z^{4m}}{r_{4m}^{4m}v(r_{4m})}, \quad m = 1, 2, \dots,$
if r_m is a maximum point of $r \mapsto r^m v(r)$.
We have $||h_m||_{v,\infty} = 1$ for all m . Moreover we obtain
 $\lim_{m\to\infty} r_m = 1.$

A computation shows there are $\beta_{m,j} \ge 0$ with

$$T_f(h_m)(z) = \sum_{0 \le 2j+1 \le 4m} (-1)^j \beta_{m,j} z^{2j+1} + \sum_{4m+1 \le 2j+1} \left(\frac{(-1)^j}{2j+1-4m} \right) \left(\frac{z^{2j+1}}{r_{4m}^{4m} v(r_{4m})} \right).$$

Cancelling the summands with negative coefficients yields

$$\frac{1}{2} \left(T_f(h_m)(z) - iT_f(h_m)(iz) \right) = \sum_{0 \le 4j+1 \le 4m} \beta_{m,j} z^{4j+1} + \sum_{4m+1 \le 4j+1} \left(\frac{1}{4(j-m)+1} \right) \left(\frac{z^{4j+1}}{r_{4m}^{4m} v(r_{4m})} \right).$$

For $z = r_{4m}$ this yields

$$\frac{r_{4m}}{5} \log\left(\frac{1}{1-r_{4m}^4}\right) = \frac{r_{4m}}{5} \sum_{k=1}^{\infty} \frac{r_{4m}^{4k}}{k} \le \sum_{k=0}^{\infty} \frac{r_{4m}^{4k+1}}{4k+1}$$

$$\stackrel{(k=j-m)}{=} \sum_{4m+1 \le 4j+1} \left(\frac{1}{4(j-m)+1}\right) \left(\frac{r_{4m}^{4j+1}v(r_{4m})}{r_{4m}^{4m}v(r_{4m})}\right)$$

$$\le \frac{1}{2} (T_f(h_m)(r_{4m}) - iT_f(h_m)(ir_{4m}))v(r_{4m})$$

$$\le ||T_f(h_m)||_{v,\infty} \to \infty \quad \text{while} \quad ||h_m||_{v,\infty} = 1.$$

Theorem 2.3. is no longer true on other open subsets of \mathbb{C} . Let

 $\mathbb{G} = \{ w \in \mathbb{C} : Im \ w > 0 \} \quad (\text{upper half plane}) \ .$

2.4.Theorem. Let $v(w) = (Im \ w)^{\gamma}$, $w \in \mathbb{G}$, for some $\gamma > 0$. If $f : \mathbb{G} \to \mathbb{C}$ is measurable and bounded then T_f is a bounded operator $H_v^{\infty} \to H_v^{\infty}$. **2.5.Definition.** A standard weight v on \mathbb{D} is *normal* if

$$\begin{split} \sup_{n \in \mathbb{N}} \frac{v(1 - 2^{-n})}{v(1 - 2^{-n-1})} < \infty \quad \text{and} \\ \exists k : \quad \limsup_{n \to \infty} \frac{v(1 - 2^{-n-k})}{v(1 - 2^{-n})} < 1. \end{split}$$

("The decay of v(r) for $r \to 1$ is not too slow and not too fast".)

Examples. $1/(1 - \log(1 - r))$ is not normal (too slow). $(1-r)^{\gamma}$ for $\gamma > 0$ is normal, $\exp(-\alpha/(1-r)^{\beta})$ for $\alpha, \beta > 0$ is not normal (too fast). **Remark.** One can show that normal weights and exponential weights satisfy the following **condition** (B) ("inner regularity condition"):

Let r_m be point of absolute maximum of $r \mapsto r^m v(r)$, $0 \le r < 1$, for m > 0. Then $\forall b_1 > 1 \exists b_2 > 1 \exists c > 0 \forall m, n > 0$: $\left(\frac{r_m}{r_n}\right)^m \frac{v(r_m)}{v(r_n)} \le b_1$ and $m, n, |n-m| \ge c$ $\Rightarrow \left(\frac{r_n}{r_m}\right)^n \frac{v(r_n)}{v(r_m)} \le b_2$

2.6.Theorem (L. 2006). Let v be a standard weight on \mathbb{D} . Then there are only two isomorphism classes of H_v^{∞} as Banach spaces, namely

 $H_v^{\infty} \sim l^{\infty}$ if and only if v satisfies (B)

and

 $H_v^{\infty} \sim H^{\infty} = \{h : \mathbb{D} \to \mathbb{C} : h \text{ holomorphic, bounded}\}\$ if and only if v does not satisfy (B).

Remark. Normal weights and exponential weights satisfy (B). $(1 - \log(1 - r))^{-1}$ does not satisfy (B). In contrast to Theorem 2.3. we have

2.7.Theorem Let v be normal. If f is a trigonometric polynomial on \mathbb{D} then T_f is a bounded operator $H_v^{\infty} \to H_v^{\infty}$. In the following we consider Toeplitz operators with radial symbols f:

2.8.Theorem. Let f be radial, i.e. f(z) = f(|z|) for $z \in \mathbb{D}$, and satisfy $\int_0^1 |f(r)| r dr < \infty$.

Then T_f is a bounded operator $H_v^{\infty} \to H_v^{\infty}$ provided that one of the following conditions is satisfied: (i) v is a normal weight on \mathbb{D} and

$$\limsup_{r \to 1} |f(r)| \cdot |\log(1-r)| < \infty,$$

(ii) v is a normal weight on \mathbb{D} and f(r) is well-defined on $r \in [0, 1]$ and is differentiable in 1,

(*iii*)
$$v(r) = \exp(-\alpha/(1-r)^{\beta}), \ 0 \le r < 1,$$

$$\limsup_{r \to 1} |f(r)| \cdot |1-r|^{-1/2-\beta/4} < \infty.$$

 T_f is compact on H_v^{∞} if

 \bullet v is normal and f satisfies

$$\lim_{r \to 1} |f(r)| \cdot |\log(1 - r)| = 0$$

or

•
$$v(r) = \exp(-\alpha/(1-r)^{\beta})$$
 and f satisfies

$$\lim_{r \to 1} |f(r)| \cdot |1-r|^{-1/2-\beta/4} = 0.$$

Main ingredient of the proof.

Let $h(z) = \sum_{k=0}^{\infty} b_k z^k$ for some $b_k \in \mathbb{C}$. Since f is radial we obtain

$$(T_f(h))(z) = \sum_{k=0}^{\infty} \gamma_k b_k z^k \text{ with } \gamma_k = \frac{\int_0^1 f(r) r^{2k+1} v(r) dr}{\int_0^1 r^{2k+1} v(r) dr},$$

i.e. T_f is a "multiplier".

(ii): We have

$$T_f = T_{f-f(1)} + T_{f(1)} = T_{f-f(1)} + f(1)id_{H_v^{\infty}}$$

and $\limsup_{r\to 1} |f(r) - f(1)| \cdot |\log(1-r)| < \infty$ (due to differentiability). Hence (ii) follows from (i). \Box

3 Bergman projections for exponential weights.

Let v, \tilde{v} be standard weights on \mathbb{D} . Recall, the Bergman projection $P_{\tilde{v}}$ is the orthogonal projection $L^2_{\tilde{v}} \to H^2_{\tilde{v}}$.

Question. Let $1 \le p \le \infty$. Under which condition is $P_{\tilde{v}}$ a bounded projection $L_v^p \to H_v^p$?

Dostanic: Let $v(r) = \tilde{v}(r) = \exp(-\alpha/(1-r)^{\beta})$ for some $\alpha, \beta > 0$. Then P_v is bounded on L_v^p if and only if p = 2.

Consequence of Theorem 2.3.: For any standard weight v on \mathbb{D} the Bergman projection P_v is unbounded on L_v^{∞} .

In the following we consider

$$v(r) = \exp\left(-\frac{\alpha}{(1-r)^{\beta}}\right)$$
 and $\tilde{v}(r) = \exp\left(-\frac{\tilde{\alpha}}{(1-r)^{\tilde{\beta}}}\right)$

for $\alpha, \tilde{\alpha}, \beta, \tilde{\beta} > 0$.

3.1.Theorem (Arroussi, Constantin, Pelaez). Let $\beta = \tilde{\beta}$.

- (i) Assume that $1 \leq p < \infty$. If $\tilde{\alpha} = 2\alpha/p$ then $P_{\tilde{v}}$ is a bounded projection $L_v^p \to H_v^p$.
- (ii) If $\tilde{\alpha} = 2\alpha$ then $P_{\tilde{v}}$ is a bounded projection $L_v^{\infty} \to H_v^{\infty}$.

3.2. Theorem (BLT).

- (i) If $\tilde{\beta} = \beta$ and $\tilde{\alpha} \neq 2\alpha/p$ then $P_{\tilde{v}}$ is unbounded on L_v^p for all $1 \leq p < \infty$.
- (ii) If $\tilde{\beta} = \beta$ and $\tilde{\alpha} \neq 2\alpha$ then $P_{\tilde{v}}$ is unbounded on L_{v}^{∞} .
- (iii) If $\tilde{\beta} \neq \beta$ then $P_{\tilde{v}}$ is unbounded on L_v^p for all pand all $\alpha, \tilde{\alpha} > 0$.

Sketch of proof of (ii) if $\tilde{\alpha} > \alpha$. Put $g_k(re^{i\varphi}) = e^{ik\varphi}/v(r)$ for $k \in \mathbb{N}$. Then $g_k \in L_v^{\infty}$ and $||g_k||_{v,\infty} = 1$. A calculation shows

$$\begin{split} ||P_{\tilde{v}}(g_k)||_{v,\infty} &\geq \int_0^1 r^{k+1} \exp\left(\frac{-\alpha}{(1-r)^{\beta}}\right) dr \cdot \\ &\quad \cdot \frac{\int_0^1 r^{k+1} \exp(-(\tilde{\alpha}-\alpha)(1-r)^{-\beta}) dr}{\int_0^1 r^{2k+1} \exp(-\tilde{\alpha}(1-r)^{-\beta}) dr} \\ &\geq c_1 \exp\left(c_2 k^{\beta/(\beta+1)} \cdot \right) \end{split}$$

$$\cdot \underbrace{\left(2^{\beta/(\beta+1)}\tilde{\alpha}^{1/(\beta+1)} - \alpha^{1/(\beta+1)} - (\tilde{\alpha} - \alpha)^{1/(\beta+1)}\right)}_{=:f(\tilde{\alpha})}\right)$$

for constants $c_1, c_2 > 0$. We have $f(\tilde{\alpha}) > 0 \Leftrightarrow \tilde{\alpha} \neq 2\alpha$. So, if $\tilde{\alpha} \neq 2\alpha$ then

$$||P_{\tilde{v}}(g_k)||_{v,\infty} \ge c_1 \exp\left(c_2 f(\tilde{\alpha}) k^{\beta/(\beta+1)}\right) \to \infty \text{ as } k \to \infty.$$

Hence $P_{\tilde{v}}$ is unbounded.

If $\tilde{\alpha} = 2\alpha$ then $f(\tilde{\alpha}) = 0$. Hence $||P_{\tilde{v}}(g_k)||_{v,\infty} \geq c_1$??? But here Theorem 3.1. says that $P_{\tilde{v}}$ is bounded.

Summing up:

• If
$$1 \le p < \infty$$
 and $\beta = \tilde{\beta}$:
 $P_{\tilde{v}}$ is a bounded projection $L_v^p \to H_v^p$
 $\Leftrightarrow \quad \tilde{\alpha} = 2\alpha/p.$
• If $p = \infty$ and $\beta = \tilde{\beta}$:
 $P_{\tilde{v}}$ is a bounded projection $L_v^\infty \to H_v^\infty$
 $\Leftrightarrow \quad \tilde{\alpha} = 2\alpha.$

• If $\beta \neq \tilde{\beta}$ then $P_{\tilde{v}}$ is never bounded on L_{v}^{p} .

Final Remark. The preceding assertions remain true if we replace H_v^p by

$$h_v^p := \{g \in L_v^p : g \text{ harmonic } \}.$$

THANK YOU !