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The following issues will be outlined:

1. Systems of the continual-discrete Sobolev polynomials {§,,(x)}(n € Z, ) and
polynomials {p,,(x)} (n € Z,) with asymptotically N-periodic coefficients.

2. Trace formula and asymptotics of Forsythe’s determinant for the continual-
discrete Sobolev polynomials.

3. Trace formula and asymptotics of Turan’s determinant for polynomials
{Pn()}(meZy).
4. Fourier series on system {g,,(x)}.

5. On multipliers of the Fourier Series in polynomials orthogonal in continuous-
discrete Sobolev space

Orthogonal polynomials

Suppose 0O is a positive Borel measure on a compact set of the real line. There is
unique sequence of polynomials  {p, (%) }n=o

Pn(x) = kpx™ + x4+ k, >0n€Z, ={012..})
such that
[ P ()P ()dO(x) = 8 (11 € T.,).
These orthonormal polynomials satisfy a three -term recurrence relation(TTRR)
XPp (%) = Apy1Pps1(X) + bppp(x) + aypr_1(x)(n € Z,),
P-1(x) =0, po(x) =c, ap =0,
where

kn ln ln+1
0, b,=-—-
g " ke K

a, = ERMETZ,).

Kn+1

Since the support of measure 6 is compact, the recurrence coefficients a,,,; n
b,, are bounded.

This TTRR can be written in matrix form



Jacobi matrix

bo aj 0 0O 0 .
] = dq b1 ds 0 0
0 dp bz dsz 0

Conversely, by Favard’s Theorem if p,,(x) are given by the recursion relation
with a,,;; > 0 and b,, € R, then there exists a positive Borel measure 6 such
that p,(x)(n € Z,) is an orthonormal polynomial system with respect to the
measure 8. If a,,,; and b,, are bounded, then the measure 0 is unique and the
support of 6 is compact.

Using recursion one can calculate polynomial system {p,, (x)};=o-

If (P. Nevai class )
lim a, ==, lim b, =0,
n—-oo 2 n—->oo
then the support of measure 8 is [—1,1]U S, where Sis a finite or infinite

number of real mass points out of [-1,1].

Ecam 6'(x) > 0 almost everywhere [-1,1], then associated Jacobi matrix
belongs to class Mt (E.A.Rakhmanov,1982).

Continual-discrete Sobolev polynomials

Let u be a finite positive Borel measure on the interval [-1,1] with infinitely
many points at the support and let the points a;, a; € R, k=1,2,...m. Forfandg

in Lfl([—l,l]) such that there exist the derivatives in «,, we can introduce the
inner product

1 . .
<fg>=[" f()g()du(x) + Tpty ik M f D (ar) 9@ (ar),
where My ; = 0, My, > 0(i = 0,1,2, ..., Ny; k = 1,2, ...,m), u({ax}) = 0,
u'(x)>0a.e.

Linear spaces with this inner product is called a “continual-discrete Sobolev
spaces”.



Let {G,(x),n € Z, ; x € [—1,1]} be the sequence of polynomials of degree n
with a positive leading coefficients orthonormal with respect to this inner product

< qn qm > = Opm (n,MEL,).

Let N;; be the positive integer number defined by

NF = N, +1, if Ngisodd,
k= {Nk + 2, if Nyiseven,
wy (6) = [TpLy (x — @)k, N = TNy Ny, 5 iy () = [ wy(Ddt .

Orthonormal polynomials §,,(x) satisfy the following recurrence relations

N N
Wn ()80 = D i Gy () + ) )
j=0 j=1

and

N

0 oty naj () + X0 doy G ()

Tn+1 () Gn(x) = Zj=0
(n€Zy;4-;=0,j=12,...;d,s,=0,n=0,1,..,s — 1).
Example. Discrete symmetric Gegenbauer-Sobolev polynomials

<f,g>.= [ f(0g(x)w,(x)dx + M[f(1)g(1) +
f(—1)g(—1)] +NIF(1)g'(1)+F (1)g’(-1)](M=0,N=0),

we(x) = (1 = x2)%(a > 1)
@P® =P M N} e Z,,x € [-1,1])
<49, > =8, m (n,MEZ,).

They have been introduced :H.Bavinck, Y.J.Meijer (1989-1990) and have
been investigated the following authors:Marcellah F.,W.Van Assche,
Foulquié Moreno A.,Koekoek R.,Koekoek J.,Arvesu J.,R.Alvarez-Nodarse
Osilenker B.P. and so on.

Some of their properties differ from the properties of classical
Gegenbauer polynomials pg (x):

1. For n large enough,the orthogonal polynomials 61;“) (x;M,N),N > 0, positive
exactly (n-2)different,real and simple zeros belonging to the interval (-1,1); the
two remainder zeros are outside of the interval being one positive and the other
one negative. All roots of p%(x) in (—1,1).



2. p3(x) are elgenfunctlons of the differential operators of a second-order.

Polynomials § )(x; M, N) are eigenfunctions of the linear differential operator
usually infinite degree.

Ifa=012,..M>0,N > 0: degree 4a + 10;M>0,N=0: 2a+4;
M=0,N>0 : 2a+8 ; this degrees are least.

() ~ =9
3. [a (1) [# 07,

(| p%(£1)| = n” 2,a > —%) behaviour at the ends

(Difference in n?).

4. (<* = 30037 (9 = ansliga () + bnsaligs (0 + bl () + 2nd 5% ()
(n € Z,; §% (x)=0, s=1,2,...;a, = 0,n = 0,1,2;b, = 0),

—1+C1+0(1) b, = 9+C2+0(1)
an =3 "8 n2

This recurrence relation has the lowest order.

Polynomials p (x) satisfy TTRR with

=t +0(2) b =0(2) G- o)

Orthogonal polynomials with asymptotically N-periodic recurrence
coefficients (APy)

Let {p,,(x)}n=obe a sequence of polynomials, 6 is a measure on a compact set
of the real line

J Pm )P (x)dO(x) = 8 (M1 € Zy).
These orthonormal polynomials satisfy a three -term recurrence relation
XPn(X) = Ans1Pns1(X) + bppp (X) + anpn_1 () (0 E Z,),
p-1(x) =0, po(x) =1, ay=0.

We assume that two periodic sequences a2, ; > 0 and bY € R(n € Z,) are
given such that

ap,y = ap(n=12,..),bp,y = by(n €Z,)
(here N> 1 is the period), and that the recurrence coefficients a,,.; and b,

satisfy



lim | a, —a%| =0, lim |b, — b |=0.
n—>oo n—>0o

We say that these orthonormal polynomials have asymptotically N-periodic
recurrence coefficients, or that the orthogonal polynomials {p,,(x)}(n € Z,)
belong to the class APy.

This class has been studied by many authors.

Denote the orthonormal polynomials with periodic recurrence coefficients a9

and bY by {g,(x)}(n € Z,). Then
an(X) = n+1qn+1(X) + bnqn(X)-l'ag qn—l(X) (Il € Z+)'
q-1(x) = 0,qo(x) = 1,a3 = 0.

The k-associated polynomials of order k {q,(lk) ()N n €Z,, k € N) satisfy the
“shifted recurrence relation”

Xqn )(x) = an+k+1%(1’:-)1(x) + bn+an )(x)+an+kq(k) (x)(n€eZy)
with
g% () =0,q{9 ) = 1.
Define
w"(x) = p(T(x)),
where
T(x) — (1)

and

p(x) =x+Vx2—1.
Let us introduce
E={x€e[-11], |0V (x)| = 1}.

Then E consists of Nintervals, where —1 <T(x) <1,



E corresponds to the essential spectrum of the orthonormal polynomials p,, (x),
and the measure 0 of these orthonormal polynomials has support E U E*, where
E*is a denumerable set, for which the accumulation points are on E.

Besides being of interest in its own right(from Function theory to algebraic
geometry) orthogonal polynomials on several intervals is a topic of interest in
numerical analysis, and in quantum chemistry.

In asurvey, P. Nevai set up a problem: Extend the Trace formula to orthogonal
polynomials on several intervals.

A solution of this problem is given in the particular case N=2 (Osilenker B.P.,1992)

Lemma 1 (J.S.Geronimo ,W.Van Assche,1991 )If the orthonormal polynomial
system {p,,}(n € Z,) belongs to the class APy and the recurense
coefficients {a, 1, b,}(n € Z,) satisfy

Yn=o(lans1 — Ansns1l+bp — byiy|) < oo,
(N — bounded variation)
then the measure 0 is absolutely continuous in
Eo = E\{w®" (x) = 1},
the weight function w(x) = 8'(x) is strictly positive and continuous in Ej,.

Lemma 2 [Osilenker B.P., 1998) Suppose that the system of orthonormal
polynomials {p,,}(n € Z,) belongs to the class APy. Then forall x € E, the
recurrence relation

NP (X) = IR dY VP (0) + ZNo d0™Vp,; ()
holds with the boundary conditions
p.(x)=06s=12.) d"M=0m=012..,j-1),
where

N (x): = 2T(x) [T, ad
with

lim d9 = lim d%Y =0(G=01,..,N-1)
n—->oo

n—oo n+j



and

Generalized Trace formula and asymptotics of the Forsythe(Turan’s)
determinant

Trace Formula

This subject is very popular. There are many papers devoted this subject.
Authors:l.M.Gelfand,B.M.Levitan,B.Simon,V.A.Sadovnichii, Aptekarev A.l.,
P.Nevai, Suetin S.P., Gesztesy G., Teschl G., J.Dombrowski, Osilenker B.P.,

and so on. | will consider this formula in the following direction.

Theorem A (J.Dombrowski, A,Maté,P.Nevai,1986) If the recurrence
coefficients of the orthonormal polynomial system {p, (x)}(n € Z,) belongs to
the class 9t and

Z;‘f:O(lan - an+1| + |bn+1 - bn D < oo,
(“bounded variation”),then (“Trace formula”)

- 1 V1i-x2
ano(arzl+1 - arzl)przz(x) + an+1(bn+1 - bn)pn(x)pn+1(x) = -

2t w(x)

holds uniformly on all compact subsets in (-1,1). In addition, the measure 6 is
absolutely continuous in the open interval (-1,1), 8'(x) = w(x) > 0 for all
x € (—1,1),and 8'(x) = w(x) is continuous in (-1,1).

The Trace formula contains recurrence coefficients for TTRR and
polynomials,which can be constructed by TTRR.

I will explain a title «Trace formula».
Let {e,}a=obe orthonormal basis of a separable Hilbert space H and ] is Jacobi

operator



Jen = ant1€n41 + bpey +ane (N € Zy;e 4 =0).

A self-adjoint operator T in a Hilbert space H has a simple (Lebesgue) spectrum
if there exists an element g€ H (generating or cyclic ), that is T*geD(T)

(k€ Z,) and the closure of the linear hull of gTg,T?g, ...is coincide with 7.

Theorem (Stone M.H.,1930) Set of all self-adjoint bounded operators with a
simple spectrum is coincided with a set of all operators generated by a bounded
Jacobi matrices. Polynomials {p,,(x)}(n € Z,) associated with J-matrix form an
orthonormal system respect to measure 6,which is a spectral measure of T,

and U: He L3, e, © p,(x), e, = pn()eo, n € N). Uis unitary operator .

We introduced a skew-symmetric operator B
Bep=apnen—1 — ant1€nr1(n € Zyse_ 1 = 0).
Commutator

[]: B]en = (]B - B])en = Z(ai+1 - a%)en + 2an+1(bn+1 - bn)en+1-

The trace of this commutator
Sp(1,B1 = ) (11, Blen en) =
n=0

=2 2%):0[(3%&1 - aﬁ) (Pn(Deg, pn(Deg) +

ans1(Bnst — bu) Pnr1 (Deg Pa(Deg)]

(00

2> [@hss = 23 PACO + 11 (s = bp)Pa(OPns1 (9]

n=0
Reformulating of the Theorem A.
Under the conditions of the Theorem A, the following formula (“Trace formula”)

_ 1V1-x?

™ w(x)

Sp[ ], B]



holds uniformly on all compact subsets in (-1,1).

A commutator [],B] is a right-hand side of the Lax representation of semi-
indefinite Toda lattice.

Turan’s determinant

They are defined by

T, (x) = an[pi(x) = Pn-1()Pns1(x) 1(n € Zy;x € [-1L,1]).

Theorem B (A.Maté, P.Nevai,V.Totik,1985) Under the conditions of Theorem A,
we have the following asymptotics of Turdn’s determinant

i T 1Vl —x2
im Ty (%) = — e
uniformly on all compact subsets Kin (-1,1).

The statements A and B were obtained by different methods. They play an
important role in a problem of approximation of the orthogonality measure for
orthogonal polynomials on an interval of the real line.

Our goal is to extend Theorems A and B to more generalized classes of orthogonal
plynomials. We obtain analogs of Theorems A and B by a unifed method that
allows to get the order of approximation.

Trace formula and asymptotics of the Forsythe(Turan’s)
determinant for continual-discrete systems

<fg>=[", f()g)du) + T, Tt Mif D (ai)g® (ay)
<8, G >= 8y m(n,m € Z,)
Define by Em=C-1L,I\UL, {a:}.
Let’s put
8=(6,, 6, €R,6, # 0, lim 6, =6 #0}.

Define by

N+1 n+j

G 8 = ) D i [8e-8,00,, 500 = B4l 000, ()

j=1 k=n+1



O-Forsyte’s determinant

If 6, = 1 (nez,), then

N+1 Dn+j
N
Gr(l,r) (X) = z Z dk,j AK,j,r(X)
j=1 k=n+1

4n(x) fln+r(X)|
Qn—j(x) QD+I'—]'(X)

(N€Z,j=01,..,N+1; r=0,1,2,...).

An,j,r(X) = Qn(X)Qn+r—j(X) - E\ln—j (X)qn+rx) = |

In particular, if j=r=1 we obtain the Turan’s determinant T,,, (x) if we put

dn+1,1 = dp+1-

| use two approach: analog of the Diriclet kernel and the Fejer kernel and
obtain two different Trace formulas.

For a continual-discrete polynomials we have the recurrence relation

wy ()G, () = o dnsjj G j () + 201 d jGn; (%)

Theorem 1 . Suppose that

N o
zz |81 — Bkj| < o0.

j=1 k=0

Assume that the orthonormal polynomial system {4,(x)}a=, satisfies the
following conditions:

(i )There exists a continuous function h(x) on &,, (majorant function) such that
|G, ()] < h(X)(X € Eyy,n € Zy).

(ii)The recurrence coefficients are of N-bound variation,i.e

N oo
Z z |dkj — digrjl < 0.

r=0 k=0

N
=0

(iii)The measure p is absolutely continuous in €., and p'(x) = w(x)

IS strictly positive and continuous on &,,.



Then the following statements are valid:

(1) Uniformly on all compact subsets K in &, the asymptotics of the &-
Forsyte’s determinant

1 —x2

hm G( )(X d) = —Ur 1(X)WN(X)

holds; an upper bound for the uniform error of approximation on all compact
subsets K in E,,is given by

GV 068 — S Un_1 COWN GO 22| < CIEN g B 81— | +

N N
DD Iy = dig )

j=0 r=1 k=n+1

where C>0 is positive constant independent of n€Z, and xeK, U;(x) =
sin(j+1)arccosx

(-1 <x<1;n€Z,)isthe Chebyshev polynomial of the second

sin(arccosx)

kind and degree j. .

(2) Uniformly on all compact subsets K in &, the following generalized Trace
formula

N oo
D Gicirry = 818 r (0 +

j=0 k=0
N o ) ) 8 | — X2
Z Z(Skdk+r+j,j - 6k+j O‘k+j,j)Qk(X)Qk+j+N(X) =—Ur_;X)wWn()
: s w(x)
j=1 k=0
holds.

Remark. For a given class polynomials this statement solves the problem posed in
the review

V.A.Sadovnichij, V.E.Podolskij . Traces of operators. Uspehi Math.Nauk,
61:5(2006), 89-156[in Russian]

Theorem 2 Let the orthonormal polynomial system {G,, (x) }n=o

has a majorant h(x), and the measure p is absolutely continuous in
Eq and u'(x) = w(x) is strictly positive and continuous on &,



and for recurrence coefficients dy ; the following relation

P Zﬂy:11'21?=o|dk,j — dprrj| + 20 ijzdz:z?:oldk,l — dyyji| < o0

holds. Then uniformly On all compact subsets K in &,,, the following generalized
Trace formula

(dicrjjdicrjin = it D)) Qi ()it (%)

Nk

N
202,
=0

1

-
1l

0

Mz EMZ

N o
]z Z(dkﬂ,j it — Aierjo1jdie1) i () Geajor (X) =

=1 1=1 k=0
= P
2 w(x)
holds.
Example. Discrete Sobolev polynomial { 61%0() () In=o

Corollary. Uniformly on all compact subsets Kc(-1,1) the following generalized
Trace formula holds:

(0]

> 3@z —a3) + (b3 — BRI [AP GO +

n=0

42(an+3bn+3 ans2bn)] 855 G0 AL ()

Z 2@ns3bnra = Ansabne) 85T 00 A (0 =

_9 22“F2(a+1)
n r2a+2)

5
(1—x2)27%

Trace formula for the class APy
{pn}(n € Z,) belongs to the class APy
Let’s put

§={5,,8, ER, 8, #0,1lim 5, =8 # 0}
n—-oco



Define by

1
Gp"(x;6) = L RN 47 (1 6),
where

A (x;8) = df™ [81DR () = SicanPremn ()Pican ().
the averaged Turan’s 6 -determinant G,(lN) (x; 6).

Theorem . Suppose that an orthonormal polynomial system {p,}(n € Z,) with
respect to a measure 8 belongs to the class APy and recurrence coefficients are
N-bounded variation. If the relation

oo N
Mo Tz |[Bkn — Scajan] di) | < oo,

is valid, then the following results hold:

1) for the averaged Turdn’s & -determinant Gle)(x; ), uniformly on all
compact subsets K c E|, the relation

: V1-T2(x)|T’
lim GV (x; 6) = —(Hk 1a3) ,J(Cxl) =

holds;

2) the generalized trace formula

S o 2 o[Srin A = Sien AV 10 (O)Dr iy (O)+

N) i,N
§ [Sicen dine; — Siensjdis 1ok C)Psnsj () =
0 k=0

N =

-
I

V1-T2(x)|T' (x)|
_(Hk 1 k) i (x)

is valid uniformly on all compact subsets K C E,,.

We now formulate the particular case of Theorem , when N=1 .

Let N=1. Here

1
AP =a, 4PV = = 5bn, T = x



Corollary .
Let {p,} is orthonomal polynomial system with respect to the measure 6
belongs to class . If for the sequence & the relation

D 160 = il <0
n=0

holds, then uniformly on all compact subsets of (-1,1) the following formulas are
valid:

6\/1 —x2

T wlkx) '

1)r1i_r}£10an+1[6n+1p721+1(x) 6n+2pn(x)pn+2(x)] (*)

2)

Z(5n+1an+1 - 6nan)p721(x) + z 6n+1(bn - bn+1)pn(x)pn+1(x) +
n=0 n=0

8\/1 —x2

T w(x)

- ()

Yr=0(Bnt1ant2 = Ont2an11)Pn(X)Ppy2(x) =

By setting §,, = 1(n = 1,2, ...) in (), we obtain Theorem B, and from (*x) for
6, = a,(n =1,2,...) one derives Theorem A.

Fourier series in continual-discrete polynomial system
Denote by R, (1<p<),R; = R, the set of functions
R, = {f 1 OPdu(x) <oo; fO (a ) exzst}
_012 Nk,akER(k )

To each f € R we construct Fourier-Sobolev series

)~ A € [~1,1])
with Fourie};:cooefficients
() =< £, > = f PO + ) D Mesf (e 20
s=1i=

We consider the trilinear T-regular method of summability defined by the matrix



A={P k=01, nn+ 1A =1,20), =0nez,}

’"n+1

Matrix A is called T - regular,if the following conditions are valid:
a) limn%o/lfcn) = 1(k € Z,is fixed);
oA - AR | < cmezy.

For example:Cesaro means (C,a > 0) , Voronoj -Norlund means,Riesz’s
means,Bernstein-Rogozinskij method for the Fourier -Jacobi series (G.l.Natanson)
and so on.

For every f € R one form A-means

Unf (2 A) 1= Y00 A ¢ ()G () (n € Z; x € [-1,1])

The point x € (a,b) is called a Lebesgue point of a function f, if the
following relation

1 x+h
limyo 5 j I£0) — £GO)|du(t) = 0
x—h

holds. As is known, the set of the Lebesgue points of f € L, (a, b) is situated p-
almost-everywhere x€(a,b).

Theorem 1. Suppose that an orthonormal polynomial system {G,, (x)}y=o has a
continuous in &,,, majorant

1Gn ()| < h(x)(x € &)
and the recurrence coefficients satisfy

N+1]ZN+1 s 0(|ds+]] ds+]+l]| +|ds+]l ds+j+1,l|) < C,(bound variation)

where the constant C>0 is independent on n € Z_, and for the entries of T-regular
matrix A the following estimate

- (k+1)(n—k+1)[1

n+1
29| ~ —
—— lnn_k_l_l] 22| < cn=0,12..).

k=0

holds. Then the following statements are valid

(i) Let fER,, 1 < p < o0, be satis
P



L1 GOIPRP ()dp(x) < oo, [, AP (x)du(x) < oo. ()

Then at every Lebesgue point X€ &,,, of function f,the A-means U,f(x;A) of

the Fourier-Sobolev series converges to f(x), that is

lim Unf(x;8) = £ ().

(ii)If,an addition, the measure p is absolutely continuous,u’(x) = w(x), and f

is continuous on [-1,1], then this relation holds uniformly on all compact
subsets Kc(-1,1).

Define by W(f(F) ={f, || |W£(p) < ®,
2 ey = 1112y + Zies Tidey Mii If P (@) P (1 < p < e0)},

where the subset F c(-1,1).

Theorem 2. Let a polynomial system {G,, (x)}, =, satisfy all conditions of
Theorem 1 and,in addition,

Yjzo

Then for any function f, satisfying (!), we have

NO) 1,1
q; (ak)| <ol 1h g g <01 <p <o, +-=1).(1)

| | Unf(x; A |W£(K)Scp||f| |W£([—1,1])<Oo

on an arbitrary compact subset K c(-1,1),where the constant C, > 0 is
independent of n€ z, and the function f.

Remarks 1.Sobolev-Gegenbaer polynomial system {c?ﬁ“) (X)}n=o satisfy the
conditions of Theorem 1 and Theorem 2.

2. The Cesaro means of Fourier-Sobolev series

A

A - A
of(f:x) = ) — (D) (n € Zy;x € [-11])
k=0 "

satisfy the conditions of Theorem 1 and Theorem 2.

For every function f € ‘R let us denote by u(r, x) of Poisson-Abel’s means of the

orthogonal Fourier series of f for O.N.P.5.{G,,}(n € Z_), that s,

(0]

u(r, 0 = ) o (NE@O <r < Lx e [-11]),

k=0



We will say that u(r, x) is p-harmonic extension of function f(x) to the
region

D={(rx),0<r<1;,-1<x<1}

We will call the trackT"' = {(r,x),0 <r < 1; —1 < x < 1} is nontangential
at the point My(1,xy)(—1 < x, < 1), if

F={rx),0<r<1;,-1<x<1;|x—x <y(d-r7)}

where the constant y > 0 is independent of r,x. The Fourier series of orthonormal
polynomials {G,}(n € Z.) will be A*-summable at the point x, € (—1,1) to the
value B, if

u(r, x)4B,
when the point M (7, x) tends to the point M, (1, x,,) for any nontangential track T

Theorem 3. Suppose that orthonormal polynomial the system {§,}(n € Z,)
have a majorant , measure p is absolutely continuous(u'(x) = w(x)) and the
recurrence coefficients are bounded variation.If the function f€ R satisfies

j F IR w (@) dx < o,

then at every Lebesgue point x, € K the Fourier —Sobolev series is summable
to the value for f(x,), when the point M(r,x) tends to the point My (1, %)
for a nontangential track T, i.e. the Fourier— Sobolev series is A*- summable to
the value for f(x;) .

On multipliers of the Fourier Series in polynomials orthogonal in
continuous-discrete Sobolev space.

Fourier-Sobolev series

(00

FOO~ ) a(Da (e [-11])

k=0
() =< f,8 >= [ f(0) @ ()du(x) + Xy X1 M, f @ (a) 4 ().

We consider the following sequence of the real numbers

Q= {pnE€Z; Qo = L;{@nln=o E1* }



For any function f € R by their Fourier-Sobolev series we introduce the linear
transformation T defined by relation

T(f; % @)~ Xz o PrCr (DG ().

Transformation T is called the multiplicatoral operator, the sequence {@,}n=o is
called the multiplicator of convergence, and series is called the multiplicatoral
series.

The sequence ® = {@,,; 9o = 1,9, € [®,n € Z,} is called quasiconvex if
Yieolk + D] A%y | < oo,
where Apy = @ — @1, A%@ = AA@K) = P — 20k + Pps2(k € L)

Theorem 1. Let the orthonormal polynomial system {§,,(x)}y=o be
satisfy the following condition

1§, (O] < h(t)(t € &)

and for the recurrence coefficients the estimate

1!\1511'2{\1;61 Yo dssij — dssjrtjl + |dseji — dsajent|) < o0
holds.If for quasiconvex sequence ® the relation

on=0()(n>o)  (*)
holds, then the following statements are valid :
(i) let for each function f € R be fulfilled
L 1f@IhOo(dt < oo,

then at every Lebesgue’s point x € &, (and, consequently, a.e.) the
multiplicatoral series converges;

(i)  suppose function f is continuous in [-1,1] and the measure du(x) is
absolutely continuous(u’(x) = w(x)) and bounded in &,, , then
multiplicatoral series is uniformly converges on all compact subsets K C
Em-

Define by

Tof (x; @) = Y=o Pxk (D (%) (n€ Z,, x€[-1,1])

the partial sums of the multiplicatoral series.



Theorem 2. Let an orthonormal polynomial system satisfies the hypotheses
of Theorem 1 and (!!). Also let a quasi-convex sequence @ satisfy the
relation () and a function fEW}P ([—1,1])(1 < p < ) satisfy (!). Then,on all
compact subsets Kof &,

|| T f (x; CD)“W(E(K) = Cp||f||W£([—1.1]) < @,

where the constant €,>0 does not depend on n ,on the function f,and on the

sequence .

Remark. Symmetric Gegenbauer-Sobolev orthonormal polynomials {q;"‘) (X)}

satisfy the conditions of Theorem 1 and Theorem 2.
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