
 

 

 

 

 

ORTHOGONAL POLYNOMIALS.FOURIER SERIES.TRACE FORMULA  

                                     B.P.Osilenker 

 

 

 

Seminar on Analysis, Differential Equations and Mathematical Physics 

 

 

 

                                 Rostov        14.XII.2023                

 

 

 

 

 

 

 

 

 

 

 

 



 

 

              The following issues will be outlined: 

1. Systems of the continual-discrete Sobolev polynomials {�̂�𝑛(𝑥)}(n ∈ ℤ+) and     

polynomials {𝑝𝑛(𝑥)} (n ∈ ℤ+)     with   asymptotically N-periodic coefficients. 

2.  Trace formula and asymptotics of Forsythe’s determinant for the continual- 

discrete Sobolev polynomials. 

3.  Trace formula and asymptotics of Turan’s determinant for polynomials   

{𝑝𝑛(𝑥)} (n ∈ ℤ+). 

4.  Fourier series on system {�̂�𝑛(𝑥)} .     

5. Оn multipliers of the Fourier Series in polynomials orthogonal in continuous-

discrete Sobolev space  

 

                           

                                 Orthogonal  polynomials 

 

Suppose    θ  is a positive Borel measure on a compact set of the real line. There is   

unique sequence of polynomials     {𝑝𝑛(𝑥)}𝑛=0
∞        

𝑝𝑛(𝑥) = 𝑘𝑛𝑥𝑛 + 𝑙𝑛𝑥𝑛−1 + ⋯ , 𝑘𝑛 > 0(n ∈ ℤ+ = {0,1,2, … }) 

such that 

                                        ∫ 𝑝𝑚(𝑥)𝑝𝑛(𝑥)𝑑𝜃(𝑥) = 𝛿𝑚,𝑛 (𝑚, n ∈ ℤ+). 

These orthonormal polynomials satisfy a three -term recurrence relation(TTRR) 

        𝑥𝑝𝑛(𝑥) = 𝑎𝑛+1𝑝𝑛+1(𝑥) + 𝑏𝑛𝑝𝑛(𝑥) + 𝑎𝑛𝑝𝑛−1(𝑥)(n ∈ ℤ+),            

                           𝑝−1(𝑥) = 0,   𝑝0(𝑥) = 𝑐,   𝑎0 = 0, 

where 

𝑎𝑛 =
𝑘𝑛

𝑘𝑛+1
> 0, 𝑏𝑛 =

𝑙𝑛

𝑘𝑛
−

𝑙𝑛+1

𝑘𝑛+1
∈ ℝ (n ∈ ℤ+). 

Since the support of  measure 𝜃 is compact, the recurrence coefficients  𝑎𝑛+1 и 

𝑏𝑛 are bounded. 

This TTRR can be written in matrix form  



                                                   J [

𝑝0

⋮
𝑝𝑛

] = 𝑥 [

𝑝0

⋮
𝑝𝑛

],  

Jacobi matrix 

                                      J = (
b0    a1     0        0     0    …
 a1    b1      a2     0     0    …
  0     a2     b2     a3     0    …

…   …       …      …      …  …

)                                                       

Conversely, by Favard’s Theorem if  𝑝𝑛(𝑥)  are given by the recursion relation 

with   𝑎𝑛+1 > 0  and 𝑏𝑛 ∈ ℝ, then there exists a positive Borel measure  𝜃 such 

that  𝑝𝑛(𝑥)( 𝑛 ∈ ℤ+) is an orthonormal polynomial system with respect to the 

measure 𝜃. If  𝑎𝑛+1 and 𝑏𝑛 are bounded, then the measure  θ is unique and the 

support of   𝜃  is compact. 

Using recursion one can calculate polynomial system {𝑝𝑛(𝑥)}𝑛=0
∞ . 

If (P. Nevai class 𝔐) 

lim
𝑛→∞

𝑎𝑛 =
1

2
,      lim

𝑛→∞
𝑏𝑛 = 0,                    

then the support of measure 𝜃  is   [−1,1] ∪ 𝑆 ,  where   𝑆 is  a finite or infinite 

number of real mass points out of  [-1,1]. 

Если  𝜃′(x) > 0    almost everywhere [-1,1], then associated Jacobi matrix 

belongs to class 𝔐 (Е.А.Rаkhmanov,1982).                                        

 

                       Continual-discrete Sobolev polynomials  

 

          Let μ be a finite positive Borel measure on the interval [-1,1] with infinitely 

many points at the support and let the points 𝑎𝑘, 𝑎𝑘 ∈ ℝ, k=1,2,…,m. For f and g 

in 𝐿𝜇
2 ([−1,1]) such that there exist the derivatives in ка , we can introduce the 

inner product 

<f,g>:=∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝜇(𝑥) + ∑ ∑ 𝑀𝑘,𝑖𝑓(𝑖)(𝑎𝑘)𝑔(𝑖)(𝑎𝑘)
𝑁𝑘
𝑖=0

𝑚
𝑘=1

1

−1
,         

  
where 𝑀𝑘,𝑖 ≥ 0, 𝑀𝑘,𝑁𝑘

> 0(𝑖 = 0,1,2, … , 𝑁𝑘; 𝑘 = 1,2, … , 𝑚), 𝜇({𝑎𝑘}) = 0,

𝜇′(𝑥) > 0 𝑎. 𝑒. 

Linear spaces with this inner product is called a “continual-discrete Sobolev 

spaces”. 



 Let {�̂�𝑛(𝑥), 𝑛 ∈ ℤ+ ; 𝑥 ∈ [−1,1]} be the sequence of polynomials of degree  n 

with a positive leading coefficients orthonormal with respect to this inner product  

                               < �̂�𝑛, �̂�𝑚 > = 𝛿𝑛,𝑚  (n,mϵℤ+) .                                                                                                           

𝐿𝑒𝑡 𝑁𝑘
∗  be the positive integer number defined by  

 

𝑁𝑘
∗ = {

𝑁𝑘 + 1, 𝑖𝑓 𝑁𝑘 𝑖𝑠 о𝑑𝑑,
𝑁𝑘 + 2, 𝑖𝑓 𝑁𝑘 𝑖𝑠 е𝑣𝑒𝑛  ,

   

𝑤𝑁(𝑥) ≔ ∏ (𝑥 − 𝑎𝑘)𝑁𝑘
∗𝑚

𝑘=1 , 𝑁 = ∑ 𝑁𝑘
∗𝑁

𝑘=1 ,  ; 𝜋𝑁+1(𝑥) = ∫ 𝑤𝑁(𝑡)𝑑𝑡
𝑥

−1
 .  

 

 Orthonormal polynomials  �̂�𝑛(𝑥)  satisfy  the following recurrence relations   

 

𝑤𝑁(𝑥)�̂�𝑛(𝑥) = ∑ 𝑑𝑛+𝑗,𝑗

𝑁

𝑗=0

�̂�𝑛+𝑗(𝑥) + ∑ 𝑑𝑛,𝑗�̂�𝑛−𝑗(𝑥)     

𝑁

𝑗=1

 

and 

                    

                 𝜋𝑁+1(𝑥)�̂�𝑛(𝑥) = ∑ 𝑑𝑛+𝑗,𝑗
𝑁+1
𝑗=0 �̂�𝑛+𝑗(𝑥) + ∑ 𝑑𝑛,𝑗�̂�𝑛−𝑗(𝑥)     𝑁+1

𝑗=1  

 

               (n∈ ℤ+; �̂�−𝑗 = 0, 𝑗 = 1,2, … ; 𝑑𝑛,𝑠 = 0, 𝑛 = 0,1, … , 𝑠 − 1). 

    Example.       Discrete symmetric Gegenbauer-Sobolev polynomials 
  

        <f,g>α= ∫ f(x)g(x)𝜔α(x)dx + M[f(1)g(1) +
1

−1

f(−1)g(−1)] +N[f’(1)g’(1)+f’(1)g’(-1)](M≥0,N≥0), 

𝜔α(x) = (1 − x2)α(α > −1)́  

{q̂n
(α)

(x) ≡ q̂n
(α)

(x; M, N)}(n ∈ ℤ+, x ∈ [−1,1]) 

<q̂n
(α)

,q̂m
(α)

>α=δn,m (n,m∈ℤ+). 

They have been introduced :H.Bavinck, Y.J.Meijer (1989-1990) and have 

been investigated the following authors:Marcell𝑎𝑛 ́ F.́ ,W.Van Assche, 

Foulquié Moreno A.,Koekoek R.,Koekoek J.,Arvesu J.,R.Alvarez-Nodarse 

Оsilenker B.P.  and so on.  

      Some of their properties   differ from the properties of classical 

Gegenbauer  polynomials 𝑝𝑛
𝛼(𝑥):                 

1.  For n large enough,the orthogonal polynomials q̂n
(α)(x; M, N), N > 0,    positive  

exactly  (n-2)different ,real and simple zeros belonging to the interval   (-1,1);  the 

two remainder zeros are outside of the interval being one positive and the other  

one negative. All roots of 𝑝𝑛
𝛼(𝑥) in (−1,1). 



2. pn
α(x) are eigenfunctions of the differential operators of a second-order. 

Polynomials  q̂n
(α)

(x; M, N)   are eigenfunctions of the linear differential operator  

usually infinite degree. 

  𝐼𝑓 α = 0,1,2, ….M > 0, N > 0:  degree 4α + 10;M>0,N=0: 2α+4;                                         

M=0,N>0 : 2α+8 ;  this degrees are least.  

3. |q̂m
(α)(±1) |≈ n−α−

3

2, |      (| 𝑝𝑛
𝛼(±1)| ≈ 𝑛𝛼+

1

2, 𝛼 > −
1

2
)   behaviour at the ends 

(Difference in 𝑛2). 

4.  (x3 − 3x)q̂n
(α)(x) = an+3q̂n+3

(α) (x) + bn+1q̂n+1
(α) (x) + bnq̂n−1

(α) (x) + anq̂n−3
(α) (x) 

(n ∈ ℤ+; q̂−s
(α)

(x)=0, s=1,2,…; an = 0, n = 0,1,2; b0 = 0), 

an =
1

8
+

C1

n
+ O (

1

n2
),   bn = −

9

8
+

C2

n
+ O (

1

n2
).                             

  This  recurrence relation  has the lowest order.    

Polynomials 𝑝𝑛
𝛼(𝑥) satisfy TTRR with 

an =
1

2
 + O (

1

n2) , bn = O (
1

n2) (n → ∞). 

                             

Orthogonal polynomials with asymptotically N-periodic recurrence 

coefficients  (A𝑷𝑵) 

 

Let {𝑝𝑛(𝑥)}𝑛=0
∞ 𝑏𝑒 𝑎 sequence of polynomials,  θ  is a measure  on a compact set 

of the real line 

                                        ∫ 𝑝𝑚(𝑥)𝑝𝑛(𝑥)𝑑𝜃(𝑥) = 𝛿𝑚,𝑛 (𝑚, n ∈ ℤ+). 

These orthonormal polynomials satisfy a three -term recurrence relation 

𝑥𝑝𝑛(𝑥) = 𝑎𝑛+1𝑝𝑛+1(𝑥) + 𝑏𝑛𝑝𝑛(𝑥) + 𝑎𝑛𝑝𝑛−1(𝑥)(n ∈ ℤ+),            

                           𝑝−1(𝑥) = 0,   𝑝0(𝑥) = 1,   𝑎0 = 0. 

           We assume that two periodic sequences an+1
0 > 0  and bn

0 ∈ ℝ(n ∈ ℤ+) are 

given such that  

                     an+N
0 = an

0 (n = 1,2, … ), bn+N
0 =  bn

0(n ∈ ℤ+)                      

(here  N≥ 1 is the period), and that the recurrence coefficients 𝑎𝑛+1 and 𝑏𝑛 

satisfy 



       lim
𝑛→∞

| 𝑎𝑛 − an
0 | = 0, lim

𝑛→∞
 |𝑏𝑛 − bn

0|=0.                                   

We say that these orthonormal polynomials have asymptotically N-periodic 

recurrence coefficients, or that the orthogonal polynomials {𝑝𝑛(𝑥)}( 𝑛 ∈ ℤ+) 

belong to the class 𝐴𝑃𝑁. 

This class has been studied by many authors. 

Denote the orthonormal polynomials with periodic recurrence coefficients  𝑎𝑛
0  

and  𝑏𝑛
0   by  {𝑞𝑛(𝑥)}(n ∈ ℤ+). Then 

xqn(x) = an+1
0 qn+1(x) + bn

0qn(x)+an
0   qn−1(x) (n ∈ ℤ+), 

𝑞−1(𝑥) = 0, 𝑞0(𝑥) = 1, 𝑎0
0 = 0. 

The k-associated polynomials of order k {𝑞𝑛
(𝑘)

(𝑥)}( 𝑛 ∈ ℤ+, 𝑘 ∈ ℕ) satisfy the 

“shifted recurrence relation” 

𝑥𝑞𝑛
(𝑘)(𝑥) = 𝑎𝑛+𝑘+1

0 𝑞𝑛+1
(𝑘) (𝑥) + 𝑏𝑛+𝑘

0 𝑞𝑛
(𝑘)(𝑥)+𝑎𝑛+𝑘

0 𝑞𝑛−1
(𝑘) (𝑥)(𝑛 ∈ ℤ+)     

with                                 

                                𝑞−1
(𝑘)(𝑥) = 0, 𝑞0

(𝑘)(𝑥) = 1. 

Define   

                              𝜔𝑁(𝑥) = 𝜌(𝑇(𝑥)), 

where 

                      𝑇(𝑥) =
1

2
{𝑞𝑁(𝑥) −

𝑎𝑁
0

𝒂𝑵+𝟏
𝟎 𝑞𝑁−2

(1) (𝑥)}                                            

and 

                                                      𝜌(𝑥) = 𝑥 + √𝑥2 − 1. 

Let us introduce 

     𝐸 = {𝑥 ∈ [−1,1], |𝜔𝑁(𝑥)| = 1} .                                            

Then  E consists of  N intervals, where  −1 ≤ 𝑇(𝑥) ≤ 1,  



E corresponds to the essential spectrum of the orthonormal polynomials 𝑝𝑛(𝑥),   

and the measure  θ of these orthonormal polynomials has support  𝐸 ∪ 𝐸∗, where  

𝐸∗is a denumerable  set, for which the accumulation points are on E.   

Besides being of interest in its own right(from Function theory to algebraic 

geometry) orthogonal polynomials on several intervals is a topic of interest in 

numerical analysis, and in quantum chemistry. 

In a survey , P. Nevai  set up a problem:  Extend the Trace formula to orthogonal 

polynomials on several intervals. 

A solution of this problem is given in the particular case N=2  (Osilenker B.P.,1992) 

Lemma 1 (J.S.Geronimo ,W.Van Assche,1991 )If the orthonormal polynomial 

system {𝒑𝒏}(𝑛 ∈ ℤ+)      belongs to the class A𝑃𝑁 and the recurense 

coefficients  {𝑎𝑛+1, 𝑏𝒏}(𝑛 ∈ ℤ+) satisfy  

∑ (|𝑎𝑛+1 − 𝑎𝑛+𝑁+1|+|𝑏𝑛 − 𝑏𝑛+𝑁|) < ∞∞
𝑛=0 ,   

(𝑁 − 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛)                           

then the measure θ  is absolutely continuous in 

                                                𝐸0 ≔ 𝐸\{𝜔2𝑁(𝑥) = 1},                

 the weight function ω(𝑥) = 𝜃′(𝑥) is strictly positive and continuous in 𝐸0. 

Lemma 2 [Osilenker B.P., 1998) Suppose that the system of orthonormal 

polynomials  {𝒑𝒏}(𝑛 ∈ ℤ+)  belongs to the class  𝐴𝑃𝑁. Then for all  𝑥 ∈ 𝐸, the 

recurrence relation 

πN(x)pn(x) = ∑ dn+j
(j,N)

pn+j(x) +N
j=0 ∑ dn

(j,N)
pn−j(x)N

j=0          

holds with the boundary conditions 

p−s(x) = 0(s = 1,2, … ),    dn
(j,N)

= 0(n = 0,1,2, … , j − 1),  

     where 

                       πN(x): = 2T(x) ∏ ak
0N

k=1                                         

with 

             lim
n→∞

dn+j
(j,N)

= lim 
n→∞

dn
(j,N)

= 0 (j = 0,1, … , N − 1)         



and 

              lim
n→∞

dn+N
(N,N)

= lim
n→∞

dn
(N,N)

= ∏ ak
0 .N

k=1    

        
 
 
     

Generalized Trace formula and asymptotics of the Forsythe(Turan’s) 

determinant 

                               

                                           Trace Formula 

This subject  is very popular.  There are many papers devoted this subject.  

Authors:I.M.Gelfand,B.M.Levitan,B.Simon,V.A.Sadovnichii, Aptekarev A.I., 

P.Nevai, Suetin S.P., Gesztesy G., Teschl  G., J.Dombrowski, Osilenker B.P., 

 and so on. I will consider this formula in the following direction. 

      Theorem A  (J.Dombrowski, A,M�́�𝑡𝑒,́ P.Nevai,1986) If the recurrence 

coefficients of the orthonormal polynomial system  {𝑝𝑛(𝑥)}(𝑛 ∈ ℤ+) belongs to 

the class 𝔐 and 

                  ∑ (|𝑎𝑛 − 𝑎𝑛+1| + |𝑏𝑛+1 − 𝑏𝑛
∞
𝑛=0 |) < ∞,                        

(“bounded variation”),then (“Trace formula”) 

∑ (𝑎𝑛+1
2 − 𝑎𝑛

2)𝑝𝑛
2(𝑥) + 𝑎𝑛+1(𝑏𝑛+1 − 𝑏𝑛)𝑝𝑛(𝑥)𝑝𝑛+1(𝑥) =

1

2𝜋
∞
𝑛=0

√1−𝑥2

𝜔(𝑥)
   

holds uniformly on all compact subsets in (-1,1). In addition, the measure θ is 

absolutely continuous in the open interval (-1,1),  𝜃′(𝑥) = 𝜔(𝑥) > 0  for all      

𝑥 ∈ (−1,1), and  𝜃′(𝑥) = 𝜔(𝑥) is continuous in (-1,1). 

The Trace formula contains recurrence coefficients for TTRR and 

polynomials,which can be constructed by TTRR. 

I will explain a title «Trace formula». 

L𝑒𝑡 {en}n=0
∞ b𝑒  orthonormal basis of a separable Hilbert space ℋ and J is  Jacobi 

operator  



 Jen = an+1en+1 + bnen + anen−1(n ∈ ℤ+; e−1 = 0).       

A self-adjoint operator T in a Hilbert space ℋ   has a simple (Lebesgue) spectrum 

if there exists an element g∈ ℋ (generating or cyclic ), that is 𝑇𝑘𝑔∈D(T) 

(k∈ ℤ+) and the closure of the linear hull of  g,Tg,𝑇2𝑔, … is coincide with ℋ. 

Theorem (Stone M.H.,1930) Set of all self-adjoint bounded operators  with a 

simple spectrum is coincided with a set of all operators generated by a bounded 

Jacobi matrices. Polynomials  {𝑝𝑛(𝑥)}(𝑛 ∈ ℤ+)   associated with J-matrix form an 

orthonormal system  respect to measure  θ,which is a spectral measure of T , 

and U: ℋ↔𝐿𝜃
2 , en ↔ 𝑝𝑛(𝑥), en = pn( J)e0,    n ∈ ℕ). U is unitary operator .  

We introduced a skew-symmetric operator ℬ 

     ℬen=anen−1 − an+1en+1(n ∈ ℤ+; e−1 = 0).        

 C𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑜𝑟  

[J, ℬ]en = ( Jℬ − ℬJ)en = 2(an+1
2 − an

2 )en + 2an+1(bn+1 − bn)en+1. 

The trace of this commutator  

Sp[ J, ℬ] = ∑([ J, ℬ]

∞

n=0

en, en) = 

=2 ∑ [(an+1
2 − an

2)(pn( J)e0, pn( J)e0) +∞
𝑛=0  

an+1(bn+1 − bn)(pn+1( J)e0, pn( J)e0)]
𝑈

⇔ 

2 ∑[(an+1
2 − an

2)

∞

n=0

pn
2(x) + an+1(bn+1 − bn)pn(x)pn+1(x)]. 

Reformulating of the Theorem  А. 

Under the conditions of the Theorem A, the following formula (“Trace formula”) 

                             Sp[ J, ℬ] =
1

π

√1−x2

ω(x)
        



holds  uniformly on all compact   subsets  in (-1,1).                           

 𝐴 commutator  [J, ℬ] is a right-hand side  of the Lax representation of semi-

indefinite Toda lattice.  

                            

                                      

                Tur�́�n’s  determinant 

They are defined by  

𝑇𝑛(𝑥) = 𝑎𝑛[𝑝𝑛
2(𝑥) − 𝑝𝑛−1(𝑥)𝑝𝑛+1(𝑥) ](n ∈ ℤ+; 𝑥 ∈ [−1,1]). 

  Theorem B (A.M�́�𝑡�́�, P.Nevai,V.Totik,1985)   Under the conditions of Theorem A, 

we have the following asymptotics of Tur�́�n’s  determinant 

lim
𝑛∞

𝑇𝑛+1(𝑥) =
1

𝜋

√1 − 𝑥2

𝜔(𝑥)
 

uniformly on all compact subsets  K in (-1,1). 

The statements A and B were obtained by different methods. They play an 

important role in a problem of approximation of the orthogonality measure for 

orthogonal polynomials on an interval of the real line. 

Our goal is to extend Theorems A and B to more generalized classes of orthogonal 

plynomials. We obtain analogs of Theorems A and B by a unifed method that 

allows to get the order of approximation.  

                        Trace formula and asymptotics of the Forsythe(Turan’s) 

determinant for  continual-discrete systems 

<f,g>:=∫ f(x)g(x)dμ(x) + ∑ ∑ Mk,if
(i)(ak)g(i)(ak)

Nk
i=0

m
k=1

1

−1
 

<q̂n, q̂m >= δn,m(n, m ∈ ℤ+) 

Define by                           ℰ𝑚=(-1,1)\ ∪𝑘=1
𝑚 {𝑎𝑘} .   

Let’s put  

             δ={𝛿𝑛, 𝛿𝑛 ∈ ℝ, 𝛿𝑛 ≠ 0, lim
𝑛→∞

𝛿𝑛 = 𝛿 ≠ 0 }. 

 
Define by 

𝐺𝑛,𝑟
(𝑁)(𝑥; 𝛿) = ∑ ∑ 𝑑𝑘,𝑗

𝑛+𝑗

𝑘=𝑛+1

𝑁+1

𝑗=1

[𝛿𝑘−𝑗�̂�
𝑘
(x)�̂�

k+r−j
(x) − 𝛿𝑘�̂�

k−j
(x)�̂�

k+r
(x) 



       δ-Forsyte’s determinant 

 If 𝛿𝑛 = 1 (n∈ℤ+), then 

Gn,r
(N)(x) = ∑ ∑ dk,j

n+j

k=n+1

N+1

j=1

∆к,j,r(x) 

∆n,j,r(x) = q̂n(x)q̂n+r−j(x) − q̂n−j(x)q̂n+r(x) = |
q̂n(x) q̂n+r(x)

q̂n−j(x) q̂n+r−j(x)
| 

                                 (n∈ ℤ+;j = 0,1, … , N + 1;  r =0,1,2,…).   

In particular, if j= r =1    we obtain the Turan’s determinant Tn+1(x) if we put 

dn+1,1 = an+1. 

                       

I  use two approach: analog of the Diriclet kernel and the Fejer kernel and 

obtain two different  Trace formulas. 

For a continual-discrete polynomials we have the recurrence relation 

 𝑤𝑁(𝑥)�̂�𝑛(𝑥) = ∑ 𝑑𝑛+𝑗,𝑗
𝑁
𝑗=0 �̂�𝑛+𝑗(𝑥) + ∑ 𝑑𝑛,𝑗�̂�𝑛−𝑗(𝑥).     𝑁

𝑗=1  

      Theorem 1 . Suppose that 

∑ ∑ |δk − δk+j|

∞

k=0

N

j=1

< ∞. 

Assume that the orthonormal polynomial system {q̂n(x)}n=0
∞     satisfies the 

following conditions: 

(i )There exists a continuous function h(x) on  ℰm (majorant function) such that  

                                  |q̂n(x)| ≤ h(x)(x ∈ ℰm, n ∈ ℤ+).                                                    

(ii)The recurrence coefficients are of N-bound variation,i.e 

∑ ∑ ∑ |dk,j

∞

k=0

N

r=0

N

j=0

− dk+r,j| < ∞. 

(iii)The measure μ is absolutely continuous in ℰm, and  μ′(x) = ω(x) 

is strictly positive and continuous on ℰm. 



Then the following statements are valid: 

(1) Uniformly on all compact subsets K     in  ℰm the asymptotics  of the δ-

Forsyte’s determinant 

lim
n→∞

Gn,r
(N)

(x; δ) =
δ

π
Ur−1(x)wN

′ (x)
√1 − x2

ω(x)
 

holds; an upper  bound for the uniform error of approximation on all compact 

subsets K in  ℰmis given by 

|Gn,r
(N)(x; δ) −

δ

π
UN−1(x)wN

′ (x)
√1−x2

ω(x)
| ≤ C{∑ ∑ |δk − δk+1| +∞

k=n+1
N
j=0  

∑ ∑ ∑ |dk,j − dk+r,j|

∞

k=n+1

N

r=1

N

j=0

} 

where C>0 is positive constant independent of n∈ℤ+  and x∈K, Uj(x) =
sin(j+1)arccosx

sin(arccosx)
(−1 ≤ x ≤ 1; n ∈ ℤ+ ) is the  Chebyshev polynomial of the second 

kind and degree j.  . 

(2)  Uniformly on all compact subsets K  in ℰm the following generalized Trace 

formula  

∑ ∑(δkdk+r,j − δk−jdk,j)q̂k(x)q̂k−j+r(x) +

∞

k=0

N

j=0

 

∑ ∑(δkdk+r+j,j − δk+jαk+j,j)q̂k(x)q̂k+j+N(x)

∞

k=0

N

j=1

=
δ

π
Ur−1(x)wN

′ (x)
√1 − x2

ω(x)
 

holds. 

Remark. For a given class polynomials this statement solves the problem posed in 

the review 

V.A.Sadovnichij, V.E.Podolskij . Traces of operators. Uspehi Math.Nauk, 

61:5(2006), 89-156[in Russian] 

Theorem 2 Let  the orthonormal polynomial system {q̂n(x)}𝑛=0
∞     

has a majorant h(x), and the measure μ is absolutely continuous in 

ℰm, 𝑎𝑛𝑑  𝜇′(𝑥) = 𝜔(𝑥) is strictly positive and continuous on ℰm. 



and for recurrence coefficients 𝑑𝑘,𝑗 the following relation 

∑ ∑ 𝑗𝑁
𝑗=1 ∑ |𝑑𝑘,𝑗 − 𝑑𝑘+𝑙,𝑗| +∞

𝑘=0
𝑁
𝑙=1 ∑ ∑ 𝑗𝑁

𝑗=1 ∑ |𝑑𝑘,𝑙 − 𝑑𝑘+𝑗,𝑙| < ∞  ∞
𝑘=0

𝑁
𝑙=0   

holds. Then uniformly on all compact subsets K  in ℰm the following generalized 

Trace formula  

∑ j

N

j=1

∑ ∑(dk+j,jdk+j+l,l − dk+j+l,jdk+l,l)q̂k(x)q̂k+j+l(x)

∞

k=0

N

l=0

 

∑ j

N

j=1

∑ ∑(dk+j,jdk+j,l − dk+j−l,jdk,l)q̂k(x)q̂k+j−l(x)

∞

k=0

N

l=1

= 

                   =  
1

2𝜋
[𝑤𝑁

′ (𝑥)]2 
√1−𝑥2

𝜔(𝑥)
  

holds. 

   Example.          Discrete Sobolev polynomial  { q̂n
(α)(𝑥)}𝑛=0

∞  
 
Corollary. Uniformly on all compact subsets K⊂(-1,1) the following generalized 
Trace formula  holds: 

∑[3(an+3
2

∞

n=0

− an
2 ) + (bn+1

2 − bn
2)] [ q̂n

(α)(x)]2 + 

4 ∑(an+3bn+3 − an+2bn)] 

∞

n=0

q̂n+2
(α) (x) q̂n

(α)(x) 

∑ 2(an+3bn+4 −

∞

n=0

an+4bn+1) q̂n+4
(α) (x) q̂n

(α)(x) = 

                             =
9

π

22αΓ2(α+1)

Γ(2α+2)
(1 − x2)

5

2 
−α. 

 
           

                Trace formula for the class   A𝑷𝑵 

{𝒑𝒏}(𝑛 ∈ ℤ+)  belongs to the class  𝐴𝑃𝑁 

Let’s put  

δ={𝛿𝑛, 𝛿𝑛 ∈ ℝ, 𝛿𝑛 ≠ 0, lim
𝑛→∞

𝛿𝑛 = 𝛿 ≠ 0 }    



Define by  

𝐺𝑛
(𝑁)(𝑥; 𝛿) =

1

𝑁
∑ ∆𝑘

(𝑁)
(𝑥; 𝛿)𝑛+𝑁

𝑘=𝑛+1  , 

where 

 ∆𝑘
(𝑁)(𝑥; 𝛿) = 𝑑𝑘

(𝑁,𝑁)
 [𝛿𝑘𝑝𝑘

2(𝑥) − 𝛿𝑘+𝑁𝑝𝑘−𝑁(𝑥)𝑝𝑘+𝑁(𝑥).         

the averaged Tur�́�n’s  𝛿 -determinant  𝐺𝑛
(𝑁)(𝑥; 𝛿).          

    Theorem .  Suppose that an orthonormal polynomial system {pn}(n ∈ ℤ+) with 

respect to a measure 𝜃  belongs to the class 𝐴𝑃𝑁 and recurrence coefficients are 

N-bounded variation. If the relation  

                  ∑ ∑ |[δk+N − δk+j+N]∞
k=0

N
j=0 dk+j

(j,N)
| < ∞,                                  

is valid, then the following results hold: 

1) for  the averaged Tur�́�n’s  δ -determinant  Gn
(N)(x; δ), uniformly on all 

compact subsets K ⊂ 𝐸0 the relation 

                     lim
𝑛→∞

𝐺𝑛
(𝑁)(𝑥; 𝛿) =

2𝛿

𝑁𝜋
(∏ ak

0)N
k=1

√1−𝑇2(𝑥)|𝑇′(𝑥)|

𝝁′(𝒙)
            

holds;  

2) the generalized trace formula 

∑ ∑ [𝛿𝑘+𝑁
∞
𝑘=0

𝑁
𝑗=0 𝑑𝑘+𝑁

(𝑗,𝑁)
− 𝛿𝑘+𝑁−𝑗𝑑𝑘

(𝑗,𝑁)
]𝑝𝑘(𝑥)𝑝𝑘+𝑁−𝑗(𝑥)+ 

∑ ∑[𝛿𝑘+𝑁

∞

𝑘=0

𝑁

𝑗=0

𝑑𝑘+𝑁+𝑗
(𝑗,𝑁)

− 𝛿𝑘+𝑁+𝑗𝑑𝑘+𝑗
(𝑗,𝑁)

]𝑝𝑘(𝑥)𝑝𝑘+𝑁+𝑗(𝑥) = 

                     
2𝛿

𝜋
(∏ ak

0)N
k=1

√1−𝑇2(𝑥)|𝑇′(𝑥)|

𝝁′(𝒙)
                                               

is valid uniformly on all compact subsets K ⊂ E0. 

We now formulate the particular case of Theorem , when N=1 . 

Let N=1. Here 

dn
(1,1)

= an,    dn
(0,1) 

=
1

2
bn, T(x) = x. 



         Corollary .  

Let {pn} is orthonomal polynomial system with respect to the measure 𝜃 

belongs to class  𝔐. If for the sequence δ the relation 

∑ |𝛿𝑛 − 𝛿𝑛+1|

∞

𝑛=0

< ∞ 

holds, then uniformly on all compact subsets of (-1,1) the following formulas are 

valid: 

1) lim
n→∞

𝑎𝑛+1[𝛿𝑛+1𝑝𝑛+1
2 (𝑥) − 𝛿𝑛+2𝑝𝑛(𝑥)𝑝𝑛+2(𝑥)] =

𝛿

𝜋

√1−𝑥2

𝜔(𝑥)
;   (∗) 

2) 

∑(𝛿𝑛+1𝑎𝑛+1 − 𝛿𝑛𝑎𝑛)𝑝𝑛
2(𝑥) + ∑ 𝛿𝑛+1(𝑏𝑛 − 𝑏𝑛+1)𝑝𝑛(𝑥)𝑝𝑛+1(𝑥)

∞

𝑛=0

∞

𝑛=0

+ 

∑ (𝛿𝑛+1𝑎𝑛+2 − 𝛿𝑛+2𝑎𝑛+1)𝑝𝑛(𝑥)𝑝𝑛+2(𝑥) =∞
𝑛=0

δ

π

√1−x2

ω(x)
 .   (∗∗ ) 

By setting 𝛿𝑛 = 1(𝑛 = 1,2, … ) in (∗), we obtain Theorem B, and from (∗∗) for 

𝛿𝑛 = 𝑎𝑛(𝑛 = 1,2, … ) one derives Theorem A. 

 

                     Fourier series in continual-discrete polynomial system 

Denote by ℜр (1≤p<∞),ℜ1 =  ℜ, the set of functions  

    ℜ𝑝 = {
𝑓, ∫ |𝑓(𝑥)|𝑝𝑑𝜇(𝑥) <

1

−1
∞; 𝑓(𝑖)(𝑎𝑘)  𝑒𝑥𝑖𝑠𝑡

𝑖 = 0,1,2, … , 𝑁𝑘 , 𝑎𝑘 ∈ ℝ(𝑘 = 1,2, … , 𝑚)
} .                                           

 To each 𝑓 ∈ ℜ   we construct  Fourier-Sobolev series                 

     

𝑓(𝑥)~ ∑ 𝑐𝑘(𝑓)�̂�𝑘(𝑥)(𝑥 ∈ [−1,1])
 

                                                                       

∞

𝑘=0

 

with Fourier coefficients 

𝑐𝑘(𝑓) =< 𝑓, �̂�𝑘 > = ∫ 𝑓(𝑥)

1

−1

�̂�𝑘(𝑥)𝑑𝜇(𝑥) + ∑ ∑ 𝑀𝑠,𝑖𝑓(𝑖)(𝑎𝑠)

𝑁𝑠

𝑖=0

𝑚

𝑠=1

�̂�𝑘
(𝑖)(𝑎𝑠). 

 

  We consider the trilinear T-regular method of summability defined by the matrix 



Λ = {𝜆𝑘
(𝑛)

, 𝑘 = 0,1, … , 𝑛, 𝑛 + 1; 𝜆0
(𝑛)

= 1, 𝜆𝑛+1
(𝑛)

= 0, 𝑛 ∈ ℤ+}. 

Matrix   Λ  is called T - regular,if the following  conditions are valid: 

а)  𝑙𝑖𝑚𝑛→∞𝜆𝑘
(𝑛)

= 1(𝑘 ∈ ℤ+is fixed); 

b) ∑ |𝜆𝑘
(𝑛)

− 𝜆𝑘+1
(𝑛)

| ≤ 𝐶 (𝑛 ∈ ℤ+).𝑛
𝑘=0  

For example:Cesaro means (𝐶, 𝛼 > 0) , Voronoj -N�̈�rlund means,Riesz’s 

means,Bernstein-Rogozinskij method for the Fourier -Jacobi series (G.I.Natanson) 

and so on. 

For every  𝑓 ∈ ℜ   one form Λ-means 

𝕌𝑛𝑓( 𝑥; Λ) ∶= ∑ 𝜆𝑘
(𝑛)𝑛

𝑘=0 𝑐𝑘(𝑓)�̂�𝑘(𝑥)(𝑛 ∈ ℤ+; 𝑥 ∈ [−1,1])                                     

 
The point    x ∈ (a, b)  is called a Lebesgue point of a function  f, if the 

following relation 

limh→0

1

2h
∫ |f(t) − f(x)|𝑑𝜇(t) = 0

x+h

x−h

                        

holds. As is known, the set of the Lebesgue points of f ∈ L𝜇
1 (a, b)  is situated μ- 

almost-everywhere  x∈(a,b).   

                 

Theorem 1. Suppose that an orthonormal polynomial system {�̂�𝑛 (𝑥)}𝑛=0
∞    has a 

continuous in  ℰ𝑚 majorant  
 

                    |�̂�𝑛(𝑥)| ≤ ℎ(𝑥)(𝑥 ∈ ℰ𝑚)   
 

and the recurrence coefficients satisfy 

∑ jN+1
j=1 ∑ ∑ (|ds+j,j

n
s=0

N+1
l=0 -ds+j+l,j| +|𝑑𝑠+𝑗,𝑙 − ds+j+l,l|) ≤ C,(bound variation) 

where the constant C>0 is independent on 𝑛 ∈ ℤ+, and for the entries of T-regular 

matrix Λ the following estimate 

∑
(𝑘 + 1)(𝑛 − 𝑘 + 1)

𝑛 + 1

𝑛

𝑘=0

[1 + 𝑙𝑛
𝑛 + 1

𝑛 − 𝑘 + 1
] |∆2𝜆𝑘

(𝑛)
| ≤ 𝐶(𝑛 = 0,1,2 … ).        

holds. Then the following statements are valid 

(i) Let f∈ℜ𝑝, 1 ≤ 𝑝 < ∞, be satisfy  



                      ∫ |𝑓(𝑥)|𝑝ℎ𝑝(𝑥)𝑑𝜇(𝑥) < ∞, ∫ ℎ𝑝(𝑥)𝑑𝜇(𝑥) < ∞.
1

−1,

1

−1
 (!) 

Then at every Lebesgue point x∈ ℰ𝑚 of function f , the  Λ - means 𝕌𝑛𝑓( 𝑥; Λ)    of 

the Fourier-Sobolev series  converges to f(x), that is  

lim
𝑛→∞

𝕌𝑛𝑓( 𝑥; Λ) = 𝑓(𝑥). 

(ii)If,an addition, the measure μ is absolutely continuous,𝜇′(𝑥) = 𝜔(𝑥), and f  

is continuous on [-1,1], then this relation holds uniformly on all compact 

subsets K⊂(-1,1).  

Define by 𝑊𝜔
𝑝(𝐹) = {𝑓, ||f||𝑊𝜔

𝑝
(𝐹) < ∞, 

||f||𝑊𝜔
𝑝

(𝐹) = ||𝑓||𝐿𝜔
𝑝

(𝐹) + ∑ ∑ 𝑀𝑘,𝑖
𝑁𝑘
𝑖=0 |𝑓(𝑖)(𝑎𝑘)|𝑝(1 ≤ 𝑝 < ∞)}𝑚

𝑘=1 , 

where the subset F ⊂(-1,1). 

Theorem 2.  Let  a polynomial system {�̂�𝑛 (𝑥)}𝑛=0
∞  satisfy all conditions of 

Theorem 1 and,in addition,  

∑ |�̂�𝑗
(𝑖)(𝑎𝑘)| < ∞,∞

𝑗=0 ||h ||𝐿𝜔
𝑞

([−1,1]) < ∞(1 < 𝑝 < ∞,
1

𝑝
+

1

𝑞
= 1). (!!) 

Then for any function f, satisfying (!), we have 

                  ||𝑈𝑛f(x; Λ)||𝑊𝜔
𝑝

(𝐾)≤𝐶𝑝||f||𝑊𝜔
𝑝

([−1,1])<∞ 

on an arbitrary compact subset K ⊂(-1,1),where the constant 𝐶𝑝 > 0 is 

independent of n∈ ℤ+ and the function f. 

Remarks 1.Sobolev-Gegenbaer polynomial system  {�̂�𝑛
(𝛼)

(𝑥)}𝑛=0
∞      satisfy the 

conditions of Theorem 1 and Theorem 2. 

       2. The Cesaro means of Fourier-Sobolev series 

σn
α(f; x) = ∑

An−k
α

An
α ck(f)�̂�k(x) (n ∈ ℤ+; x ∈ [−1,1])

n

k=0

 

satisfy the conditions of Theorem 1 and Theorem 2. 

For every function  𝑓 ∈ ℜ let us denote by 𝑢(𝑟, 𝑥) of Poisson-Abel’s means of the 

orthogonal Fourier series of  f  for O.N.P.S.{�̂�𝑛}(𝑛 ∈ 𝒁+), that is, 

𝑢(𝑟, 𝑥) = ∑ 𝑟𝑘𝑐𝑘(𝑓)�̂�𝑘(𝑥)(0 < 𝑟 < 1; 𝑥 ∈ [−1,1]).

∞

𝑘=0

 



We will say that 𝑢(𝑟, 𝑥) is μ-harmonic extension of function 𝑓(𝑥) to the 

region 

𝐷 = {(𝑟, 𝑥), 0 ≤ 𝑟 < 1; −1 ≤ 𝑥 ≤ 1}.                                              

We will call the track Γ = {(𝑟, 𝑥), 0 ≤ 𝑟 < 1; −1 < 𝑥 < 1} 𝑖𝑠 nontangential 

at the point 𝑀0(1, 𝑥0)(−1 < 𝑥0 < 1), if 

Γ = {(𝑟, 𝑥), 0 ≤ 𝑟 < 1; −1 < 𝑥 < 1; |𝑥 − 𝑥0| < 𝛾(1 − 𝑟)},                        

where the constant 𝛾 > 0 is independent of r,x. The Fourier series of orthonormal 

polynomials {�̂�𝑛}(𝑛 ∈ 𝒁+) will be 𝐴∗-summable at the point 𝑥0 ∈ (−1,1) to the 

value 𝛽, if 

𝑢(𝑟, 𝑥) 𝛽,→
𝐴∗

 

when the point 𝑀(𝑟, 𝑥) tends to the point 𝑀0(1, 𝑥0) for any nontangential track Γ.   

       Theorem 3 . Suppose that orthonormal polynomial the system {�̂�𝑛}(𝑛 ∈ 𝒁+) 
have a majorant , measure   μ is absolutely continuous(𝜇′(𝑥) = 𝜔(𝑥)) and the 

recurrence coefficients are bounded variation.If the function f∈ ℜ   satisfies 

∫|𝑓(𝑥)|ℎ(𝑥)𝜔(𝑥)𝑑𝑥 < ∞,

1

−1

 

then at every Lebesgue point x0 ∈ K the Fourier – Sobolev series is  summable  
to the value for  f(x0) , when the point   M(r, x)  tends to the point M0(1, x0)  
for a nontangential track  Γ, i.е. the Fourier– Sobolev series is A∗- summable  to 
the value for  f(x0) . 

 

 
 

 Оn multipliers of the Fourier Series in polynomials orthogonal in 

continuous-discrete Sobolev space. 

  
Fourier-Sobolev series     

𝑓(𝑥)~ ∑ 𝑐𝑘(𝑓)�̂�𝑘(𝑥)      (𝑥 ∈ [−1,1])
 

                                                                       

∞

𝑘=0

 

             

𝑐𝑘(𝑓) =< 𝑓, �̂�𝑘 > = ∫ 𝑓(𝑥)
1

−1
�̂�𝑘(𝑥)𝑑𝜇(𝑥) + ∑ ∑ 𝑀𝑠,𝑖𝑓(𝑖)(𝑎𝑠)𝑁𝑠

𝑖=0
𝑚
𝑠=1 �̂�𝑘

(𝑖)(𝑎𝑠).      

   
   We consider the following sequence of the real numbers 

Ф = {φ𝑛, n ∈ ℤ+; φ0 = 1; {φ𝑛}n=0
∞ ∈ l∞ }.               



 For any function 𝑓 ∈ ℜ by their Fourier-Sobolev series we introduce the linear 

transformation Т  defined by relation 

                        T(f; x; Ф)~ ∑ φkck(f)�̂�k(x).∞
k=0  

Transformation Т is called the multiplicatoral operator, the sequence {φ𝑛}𝑛=0
∞  is     

called the multiplicator of convergence, and series is called the multiplicatoral 

series. 

The sequence Ф = {φn, ; φ0 = 1, 𝜑𝑛 ∈ 𝑙∞, 𝑛 ∈ ℤ+}  is called quasiconvex if  

                                                ∑ (𝑘 + 1)|∞
𝑘=0 ∆2𝜑𝑘| < ∞,              

whеre Δ𝜑𝑘 = 𝜑𝑘 − 𝜑𝑘+1,   ∆2𝜑𝑘 = ∆(Δ𝜑𝑘) = 𝜑𝑘 − 2𝜑𝑘+1 + 𝜑𝑘+2(𝑘 ∈ ℤ+)                                    

              Theorem 1 .  Let the orthonormal polynomial system  {�̂�𝑛(𝑥)}𝑛=0
∞  be 

satisfy the following condition 

                                                |�̂�𝑛(𝑡)| ≤ ℎ(𝑡)(𝑡 ∈ ℰ𝑚)     
                           

and for the recurrence coefficients the estimate 

             ∑ jN+1
j=1 ∑ ∑ (|ds+j,j

∞
s=0

N+1
l=0 − ds+j+l,j| + |𝑑𝑠+𝑗,𝑙 − ds+j+l,l|) < ∞    

                                   

holds.If for  quasiconvex sequence Ф the relation  

                                               𝜑𝑛 = 𝑂 (
1

ln 𝑛
) (𝑛 → ∞)          ( ∗ )                                                             

holds, then the following statements  are valid  : 

(i) let for each function 𝑓 ∈ ℜ  be fulfilled   

                   ∫ |𝑓(𝑡)|ℎ(𝑡)𝜔(𝑡)𝑑𝑡
1

−1
< ∞,                              

then at every Lebesgue’s  point 𝑥 ∈ ℰ𝑚 (and, соnsequently, a.e.)   the 

multiplicatoral series  converges; 

(ii) suppose function 𝑓  is continuous in [-1,1]  and the measure  dμ(x)  is  

absolutely continuous(𝜇′(𝑥) = 𝜔(𝑥))   and bounded in ℰ𝑚 , then 

multiplicatoral series is uniformly converges on all compact subsets 𝐾 ⊂ 

ℰ𝑚. 

Define by 

        𝑇𝑛𝑓(𝑥; Ф) = ∑ φkck(f)�̂�k(x)𝑛
k=0  (n∈ ℤ+, x∈[-1,1]) 

the partial sums of the multiplicatoral series. 



 Theorem 2. Let an orthonormal polynomial system satisfies the hypotheses  

of Theorem 1 and (!!).  Also let a quasi-convex sequence  Ф   satisfy the 

relation (∗) and a function f∈𝑊𝜔
𝑝([−1,1])(1 < 𝑝 < ∞) satisfy (!). Then,on all 

compact subsets K of   ℰ𝑚    

||𝑇𝑛𝑓(𝑥; Ф)||𝑊𝜔
𝑃(𝐾) ≤ 𝐶𝑝||𝑓||𝑊𝜔

𝑃([−1,1]) < ∞, 

where the constant 𝐶𝑝>0 does not depend on n ,on the function  f ,and on the 

sequence  Ф. 

     Remark. Symmetric Gegenbauer-Sobolev orthonormal polynomials {q̂n
(α)(x)}  

satisfy the conditions of Theorem 1 and Theorem 2. 
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