ON THE BISHOP-PHELPS PROPERTY

Francisco Javier Garcia-Pacheco

Department of Mathematics College of Engineering University of Cadiz

Seminar on Analysis, Differential Equations and Mathematical Physics

Regional Mathematical Center of Southern Federal University

ON THE BISHOP-PHELPS PROPERTY

- Krein-Milman properties
- Bishop-Phelps property
- Inf-attaining functionals
- Supporting vectors

CONTENTS

1 On the Bishop-Phelps property

- Krein-Milman properties
- Bishop-Phelps property
- Inf-attaining functionals
- Supporting vectors

≣ ▶

CONTENTS

1 On the Bishop-Phelps property

- Krein-Milman properties
- Bishop-Phelps property
- Inf-attaining functionals
- Supporting vectors

(日)

э

Krein-Milman properties Bishop-Phelps property Inf-attaining functionals Supporting vectors

KREIN-MILMAN PROPERTIES

KREIN-MILMAN PROPERTY

A real topological vector space enjoys the Krein-Milman property provided that every bounded, closed, convex subset has an extreme point.

STRONG KREIN-MILMAN PROPERTY

A real topological vector space enjoys the strong Krein-Milman property provided that every bounded, closed, convex subset is the closed convex hull of its extreme points.

• □ > • @ > • E > .

Krein-Milman properties Bishop-Phelps property Inf-attaining functionals Supporting vectors

KREIN-MILMAN PROPERTIES

KREIN-MILMAN PROPERTY

A real topological vector space enjoys the Krein-Milman property provided that every bounded, closed, convex subset has an extreme point.

STRONG KREIN-MILMAN PROPERTY

A real topological vector space enjoys the strong Krein-Milman property provided that every bounded, closed, convex subset is the closed convex hull of its extreme points.

イロト イ理ト イヨト イヨト

CONTENTS

1 On the Bishop-Phelps property

- Krein-Milman properties
- Bishop-Phelps property
- Inf-attaining functionals
- Supporting vectors

(日)

э

イロト イポト イヨト イヨト

CONVERGENCE LINEAR TOPOLOGIES

$\sigma(F, G)$

Let *M* be a topological module over a topological ring *R* and *I* a nonempty set. Take a submodule *F* of *M*^{*I*} and $\mathcal{G} \subseteq \mathcal{P}(I)$ upward directed so that f(G) is bounded in *M* for all $G \in \mathcal{G}$ and all $f \in F$. For every $G \in \mathcal{G}$ and every 0-neighborhood $U \subseteq M$, the sets

$$\mathcal{U}(G,U) := \big\{ f \in F : f(G) \subseteq U \big\}$$

form a base of 0-neighbourhoods for a module topology on F called the convergence linear topology of F generated by G.

イロト イヨト イヨト イ

Examples of convergence linear topologies

Remark

If R is a practical topological ring, in other words, $0 \in cl(\mathcal{U}(R))$, then every finite subset of M is bounded.

Example

If *R* is practical and *G* is the set of finite subsets of *I*, then $\sigma(F, G)$ is the pointwise convergence topology on *F* or, equivalently, the inherited product topology on *F* from M^{I} .

イロト イ理ト イヨト イヨト

Examples of convergence linear topologies

Remark

If R is a practical topological ring, in other words, $0 \in cl(\mathcal{U}(R))$, then every finite subset of M is bounded.

EXAMPLE

If *R* is practical and *G* is the set of finite subsets of *I*, then $\sigma(F, G)$ is the pointwise convergence topology on *F* or, equivalently, the inherited product topology on *F* from M^{I} .

Image: A matrix and a matrix

3 ×

Examples of convergence linear topologies

Remark

The topological dual module of M, M^* , is a right R-module. Thus, it can be endowed with a convergence linear topology since $M^* \subseteq R^M$.

Example

If *R* is practical, then the finite subsets of *M* define a convergence linear topology on M^* which is the pointwise convergence topology on M^* , also known as the w^* -topology.

Example

If we take the family \mathscr{B}_M of all bounded subsets of M, then we obtain a stronger convergence linear topology on M^* called the \mathscr{B}_M -topology.

(日)

Examples of convergence linear topologies

Remark

The topological dual module of M, M^* , is a right R-module. Thus, it can be endowed with a convergence linear topology since $M^* \subseteq R^M$.

EXAMPLE

If *R* is practical, then the finite subsets of *M* define a convergence linear topology on M^* which is the pointwise convergence topology on M^* , also known as the w^* -topology.

Example

If we take the family \mathscr{B}_M of all bounded subsets of M, then we obtain a stronger convergence linear topology on M^* called the \mathscr{B}_M -topology.

イロト イ理ト イヨト イヨト

Examples of convergence linear topologies

Remark

The topological dual module of M, M^* , is a right R-module. Thus, it can be endowed with a convergence linear topology since $M^* \subseteq R^M$.

EXAMPLE

If *R* is practical, then the finite subsets of *M* define a convergence linear topology on M^* which is the pointwise convergence topology on M^* , also known as the w^* -topology.

Example

If we take the family \mathscr{B}_M of all bounded subsets of M, then we obtain a stronger convergence linear topology on M^* called the \mathscr{B}_M -topology.

CONVERGENCE LINEAR TOPOLOGIES

NOTATION

Let X be a real or complex topological vector space. Then:

- \mathscr{B}_X is the family of bounded subsets of X.
- BCC_X is the family of bounded, closed, convex subsets of X.

Lemma

If X is a Hausdorff locally convex real or complex topological vector space, then $\overline{co}(A)$ is bounded for every bounded subset A of X. Therefore, $\sigma(X^*, \mathcal{B}_X) = \sigma(X^*, \mathcal{BCC}_X)$.

イロト イポト イヨト イヨト

CONVERGENCE LINEAR TOPOLOGIES

NOTATION

Let X be a real or complex topological vector space. Then:

- \mathscr{B}_X is the family of bounded subsets of X.
- \mathcal{BCC}_X is the family of bounded, closed, convex subsets of X.

Lemma

If X is a Hausdorff locally convex real or complex topological vector space, then $\overline{co}(A)$ is bounded for every bounded subset A of X. Therefore, $\sigma(X^*, \mathcal{B}_X) = \sigma(X^*, \mathcal{BCC}_X)$.

イロト イ理ト イヨト イヨト

BISHOP-PHELPS PROPERTY

NOTATION

Let X be a real topological vector space and C a nonempty subset of X. The set of functionals attaining their sup on C is denoted by $SA(C) := \{f \in X^* : \sup f(C) \text{ is attained on } C\}.$

BISHOP-PHELPS PROPERTY

A real topological vector space X is said to have the Bishop-Phelps property if for every bounded, closed, convex subset B of X, the set SA(B) is dense in X^{*} for the σ (X^{*}, \mathcal{BCC}_X)-topology.

BISHOP-PHELPS PROPERTY

Notation

Let X be a real topological vector space and C a nonempty subset of X. The set of functionals attaining their sup on C is denoted by $SA(C) := \{f \in X^* : \sup f(C) \text{ is attained on } C\}.$

BISHOP-PHELPS PROPERTY

A real topological vector space X is said to have the Bishop-Phelps property if for every bounded, closed, convex subset B of X, the set SA(B) is dense in X^* for the σ (X^* , \mathcal{BCC}_X)-topology.

(日)

EQUIVALENCE OF KREIN-MILMAN PROPERTIES

Theorem

Let X be a real topological vector space. Let Y be a closed complemented subspace of X. If X has the Bishop-Phelps property, then so does Y.

Theorem

Let X be a Hausdorff locally convex real topological vector space satisfying the Bishop-Phelps property. If $ext(A) \neq \emptyset$ for all bounded, closed, convex subset A of X, then $A = \overline{co}(ext(A))$ for all bounded, closed, convex subset A of X.

• • • • • • • • • • • •

EQUIVALENCE OF KREIN-MILMAN PROPERTIES

Theorem

Let X be a real topological vector space. Let Y be a closed complemented subspace of X. If X has the Bishop-Phelps property, then so does Y.

Theorem

Let X be a Hausdorff locally convex real topological vector space satisfying the Bishop-Phelps property. If $ext(A) \neq \emptyset$ for all bounded, closed, convex subset A of X, then $A = \overline{co}(ext(A))$ for all bounded, closed, convex subset A of X.

Examples

Remark

Every real Banach space satisfies the Bishop-Phelps property in view of the famous Bishop-Phelps Theorem.

Theorem

Let X be a real vector space. If X is endowed with the finest locally convex vector topology, then X enjoys the Bishop-Phelps property.

Example

There exists a real normed space X which is not subreflexive, therefore, $SA(B_X)$ is not dense in the norm-topology of X^* , which is precisely the $\sigma(X^*, \mathscr{BCC}_X)$ -topology of X^* . As a consequence, Xdoes not satisfy the Bishop-Phelps property.

Examples

Remark

Every real Banach space satisfies the Bishop-Phelps property in view of the famous Bishop-Phelps Theorem.

Theorem

Let X be a real vector space. If X is endowed with the finest locally convex vector topology, then X enjoys the Bishop-Phelps property.

Example

There exists a real normed space X which is not subreflexive, therefore, $SA(B_X)$ is not dense in the norm-topology of X^* , which is precisely the $\sigma(X^*, \mathscr{BCC}_X)$ -topology of X^* . As a consequence, X does not satisfy the Bishop-Phelps property.

Examples

Remark

Every real Banach space satisfies the Bishop-Phelps property in view of the famous Bishop-Phelps Theorem.

Theorem

Let X be a real vector space. If X is endowed with the finest locally convex vector topology, then X enjoys the Bishop-Phelps property.

EXAMPLE

There exists a real normed space X which is not subreflexive, therefore, $SA(B_X)$ is not dense in the norm-topology of X^* , which is precisely the $\sigma(X^*, \mathscr{BCC}_X)$ -topology of X^* . As a consequence, Xdoes not satisfy the Bishop-Phelps property.

CONTENTS

1 On the Bishop-Phelps property

- Krein-Milman properties
- Bishop-Phelps property
- Inf-attaining functionals
- Supporting vectors

(日)

э

イロト イ押ト イヨト イ

INF-ATTAINING FUNCTIONALS

NOTATION

Let X be a real topological vector space and C a nonempty subset of X. The set of functionals attaining their inf on C is denoted by $IA(C) := \{f \in X^* : \inf f(C) \text{ is attained on } C\}.$

LEMMA

Let X be a real topological vector space. Let $A \subseteq X$ and $f \in X^*$ such that f(A) is bounded above. Then there exists $B \subseteq X$ closed and convex such that $A \subseteq B$ and $f \in SA(B)$. If X is Hausdorff and locally convex and A is bounded, then B can be choosen to be also bounded.

Krein-Milman properties Bishop-Phelps property Inf-attaining functionals Supporting vectors

(日)

INF-ATTAINING FUNCTIONALS

NOTATION

Let X be a real topological vector space and C a nonempty subset of X. The set of functionals attaining their inf on C is denoted by $IA(C) := \{f \in X^* : \inf f(C) \text{ is attained on } C\}.$

Lemma

Let X be a real topological vector space. Let $A \subseteq X$ and $f \in X^*$ such that f(A) is bounded above. Then there exists $B \subseteq X$ closed and convex such that $A \subseteq B$ and $f \in SA(B)$. If X is Hausdorff and locally convex and A is bounded, then B can be choosen to be also bounded.

Krein-Milman properties Bishop-Phelps property Inf-attaining functionals Supporting vectors

イロト イ理ト イヨト イヨト

A CHARACTERIZATION OF REFLEXIVITY

Theorem

Let X be a Hausdorff locally convex real topological vector space. If there exist a bounded, closed, and convex subset C of X and $f \in X^* \setminus IA(C)$, then there exists another bounded, closed, and convex subset D of X such that $C \subseteq D$ and $f \in SA(D) \setminus IA(D)$.

Corollary

A real Banach space X is reflexive if and only if IA(C) = SA(C) for all bounded, closed, and convex subset C of X. In this situation, $IA(C) = SA(C) = X^*$ for all bounded, closed, and convex subset C of X.

イロト イ押ト イヨト イ

A CHARACTERIZATION OF REFLEXIVITY

Theorem

Let X be a Hausdorff locally convex real topological vector space. If there exist a bounded, closed, and convex subset C of X and $f \in X^* \setminus IA(C)$, then there exists another bounded, closed, and convex subset D of X such that $C \subseteq D$ and $f \in SA(D) \setminus IA(D)$.

COROLLARY

A real Banach space X is reflexive if and only if IA(C) = SA(C) for all bounded, closed, and convex subset C of X. In this situation, $IA(C) = SA(C) = X^*$ for all bounded, closed, and convex subset C of X.

CONTENTS

1 On the Bishop-Phelps property

- Krein-Milman properties
- Bishop-Phelps property
- Inf-attaining functionals
- Supporting vectors

(日)

э

ヘロト ヘアト ヘリト ヘリト

SUPPORTING VECTORS

Definition

Let $T : X \to Y$ be a continuous linear operator between real or complex normed spaces. The set of supporting vectors of T is defined as $\operatorname{suppv}(T) = \{x \in X : ||T(x)|| = ||T|| ||x||\}.$

Remark

Let X, Y be real or complex normed spaces and $T : X \to Y$ a continuous linear operator. If $suppv(T) \neq \{0\}$, then $suppv(T^*) \neq \{0\}$.

イロト 不得 とうほう 不良 とう

SUPPORTING VECTORS

DEFINITION

Let $T : X \to Y$ be a continuous linear operator between real or complex normed spaces. The set of supporting vectors of T is defined as $\operatorname{suppv}(T) = \{x \in X : ||T(x)|| = ||T|| ||x||\}.$

Remark

Let X, Y be real or complex normed spaces and $T : X \to Y$ a continuous linear operator. If $\operatorname{suppv}(T) \neq \{0\}$, then $\operatorname{suppv}(T^*) \neq \{0\}$.

SUPPORTING VECTORS OF DUAL OPERATORS

Lemma

Let X, Y be real or complex normed spaces and $T : X \rightarrow Y$ a continuous linear operator. Then

 $\operatorname{suppv}(T^*) \supseteq \left\{ \boldsymbol{y}^* \in \boldsymbol{Y}^* : T^{-1}\left(\operatorname{suppv}(\boldsymbol{y}^*)\right) \cap \operatorname{suppv}(T) \neq \{0\} \right\}.$

If X is reflexive, then

 $\operatorname{suppv}(T^*) \backslash \{0\} \subseteq \left\{ \pmb{y}^* \in \pmb{Y}^* : T^{-1}\left(\operatorname{suppv}(\pmb{y}^*)\right) \cap \operatorname{suppv}(T) \neq \{0\} \right\}.$

イロト 人間 とくほ とくほ とう

ANOTHER CHARACTERIZATIONS OF REFLEXIVITY

COROLLARY

A real or complex Banach space X is reflexive if and only if for every Banach space Y and for every continuous linear operator $T : X \rightarrow Y$ such that suppv $(T) \neq \{0\}$,

$$\operatorname{suppv}(T^*) = \left\{ \boldsymbol{y}^* \in \boldsymbol{Y}^* : T^{-1}\left(\operatorname{suppv}(\boldsymbol{y}^*)\right) \cap \operatorname{suppv}(T) \neq \{0\} \right\}.$$

COROLLARY

A real or complex Banach space X is reflexive if and only if for every Banach space Y and for every continuous linear operator $T: X \rightarrow Y$,

$\operatorname{suppv}(T^*) \neq \{0\} \iff \operatorname{suppv}(T) \neq \{0\}.$

ANOTHER CHARACTERIZATIONS OF REFLEXIVITY

COROLLARY

A real or complex Banach space X is reflexive if and only if for every Banach space Y and for every continuous linear operator $T : X \rightarrow Y$ such that suppv $(T) \neq \{0\}$,

$$\operatorname{suppv}(T^*) = \left\{ y^* \in Y^* : T^{-1}\left(\operatorname{suppv}(y^*)\right) \cap \operatorname{suppv}(T) \neq \{0\} \right\}.$$

COROLLARY

A real or complex Banach space X is reflexive if and only if for every Banach space Y and for every continuous linear operator $T: X \rightarrow Y$,

$$\operatorname{suppv}(T^*) \neq \{0\} \iff \operatorname{suppv}(T) \neq \{0\}.$$

イロト イポト イヨト イヨト