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SCATTERING
-

SCATTERERIlling⑮
Tident &

field E
↓

&

scattered field



⑦

inition1 A n-dimensional screen

is a boundedmooth n-dimensional
I

n + 1subm unfold , with bounday, on R
Hence a 2D seveen in bounded

surface with bounday in R.
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THE SCHIEFER'S PROBLEM

We callon open let toa
R

anobstacle if M- I is commented
and s is bounded

.

&



②

THE SCHIEFER'S PROBLEM

We call on open dist to a
Ri

anobstacle if M- I is commented
and s is bounded

.

Direct Scattering Problem

Let o ba C"function .
We say

thati is a solution of the direct

rattering problem for incident

jed W
"
if I u

S

I
the cattered

field f such that u = : + us satisfy
if = 0

is = o

jiil (* +hu = 0 in 1"-r

in) us ratifies the Sommerfeld's
radiation condion i. t.

us is an outgoing field.



③
If S is a ruen

,
the direct

reathing problem is defined
in the same way except

that the

condition (i) is replaced by

(i) "Is = 0.

Domach Physally the above
-

mahla liver bes the acourt's
a

setting from a sound-soft
seren y
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③
If S is a ruen

,
the direct

reathing problem is defined exactly
in the same way except

that

condition (i) is replaced by

(i) "Is = 0.

Domach Physically-

the above problems
a

liveri be the scattering &

of a comtic waves

from a sound-soft
obstacle on seveen

-

A
.
Sommerfeld

1868 - 1951
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(8 + h(u = 0

is called the Helmholz equation.
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is called the Helmholz equation.
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in the frequency domain
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The equation
·

2

(8 + h(u = 0

is called the Helmholz equation.
It describes the want motion

in the frequency domain
and it is obtainedIn
Fouries-transforming the ware

equation.

Hermann Helmholtz
S

1821 - 1894



⑤

Inverse Scattering Problem

If n = mi + us &
n = u(X

,
b
,
0)

is a solution of the Dire at

Scatting problems , thos
i b IX1

uS(x) = 2 *
( Y )W
-

n - 2

#I

+ 0/Ix +
-I

where
:I the direction of X .

Nate that
~

nix1 = u*(
,
0
,
k)

is called the for fold on the

rathing amplitude .

Y



Fixed
energy

inverse scattering
maken

Determine or on 5 from#
,
4) for given values

of * , 0 when ko is fixed.
(Fixed energy

in vene scattering-

palten



Inverse Scattering Problem ⑤

Determine or on 5 from50
,
4) for certain values

of * , 0 when
.

k > o is fixed.

Stiffer Theorems The mernements
- &

S

M
· [

*
(*, / Xe So 'S

J

j /N I all
uni quely determine so for
choices of different j , jeI
This is ter also for screens .

&
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⑤

THE SHIFFER PROBLEM
j

We call No one measurement.

Schiffen Theorem (7)
any infirmite member of
measurement determine o or

s uniquely

WHAT ABOUT ONE MEASUREMENT ?
-

&
↑ ↳

S

g

L



THE SHIFFER PROBLEM
j

We call No one measurement.

Schiffen Theorem (7)
any write muber of
measurement determine o or

s uniquely

WHAT ABOUT ONE MEASUREMENT 2

#siSSCHIFFEM'sPROBLEM



⑦

CONJECTURE

In R one single measurement
A - 1

& u°, 0) To fixed and eS 3Ialways determines any
obstacle on

any screm uniquely s

- The Schiffer's Problem

exists since 1960'
- see the book of Lax and

Phillip in scattering theory 1962



⑧
THE CASE H = 2

-

In D theserent are one-

dimensional and hence ancs.

If k + 0 the solution of
the direct scattering prakkm·

can bes written as

u(x) = S Ho"(Exx-y1) glybesly)
j

fas * ER-T
.
Here His3

the Hankel function of the

first kind.



⑨
(1)

Properties of H .

i) ( +H: (1) = G(x)

T
Dirac delta

2) I
!

"
(2) = Floga + bounded

far 10

The solution of the direct
battering patte for a screen I

is

easy :



&

Integration by part give
()uS(x)
=
((x-y 1 )g47ds(y)

refer

5(x) =[m] S
XRT

↑ jump on I

Fitting x I (Recall

u = ni + us
,
vanish on PS

(2) · nic) = Je"(mix-21) glyidsly
↑

faux T

solution : salve from 221,
insert it to (1) toobtain

us(x) everywhere in R



uh-cesk= 0 ⑨

Physically this conponds to
the case of determining of
class inelectrostatic measure-

ments.



uh-cesk= 0 ⑨

Physically this conponds to
the case of determining of
screens by de , tostatic measure-

ments.
-

Mon exactly : Assume I

is a screen in R and

Ou = 0 inRi

ulp
= 0

u = cont + No

(*) &enter JOUR +Sluids
R I

Note thatI can be replaced
by assoming :I is bounded



⑩

The inverse electra stalia problem
is the following :

Given N anda as above
determine to from the Lanchy-S

data
-

of u on GB

where B is a flasge) bath
containing ja

* KORSAA



⑩

The inverse electra stalia problem
is the following :

Given 5 anda as above

determine to from the Canchy-
-

data of u on
GB

whe B is a Clarge) bath
contain in 50 .

Wate that in Electrical Impedance
Tomography or in Calder
Maldens it is assumed that
the Cauchy data
is knowm for -LL measurements.



Call k = 0
,
u = r ⑪

Do all

In
&B

Dp = (n, known onds foru
The task : DetermineI

Uniqueness of the Inves Problem :

Assem D = Dr .
Does it follow↑

g

↑ 2
1

= M .



Gek = 0
,

n = 2
, ⑪

Recall
up in real analytic in

M2 T
.

Thou I (Blisten
,
Ol
,
P
.
2024)

-

If T is
anysnooth crack

then Up is singular at both of
it's tipe

-vallary2 D uniquely determines
T

the crack.

The beef here is the proof of
The 1

.
However we next show

how can 2 follows readily from that.



Case n = 2
,
k = 0 ⑬

Proof The most difficult ass-

·7
Impossible since 5

U
in analytic near point o

leat
by Theorem 1

us
in ingular

at the tip A
of N2 Thus only this is possible

M
T
2



Case n = 2
,
k = 0 ⑬

The most difficult ass

~A 7
Impossible since 5

U
in analytic near point o

leat
by Theorem 1

us
in ingular

at the tip A
of N2 Thus only this is possible

↑
2

&S
&

SS/S

T



⑭
Since up is O at to me have

i

Mi
,
i = 1

,
2 is harmonic in U

and Milou"
O
I
i = 1

, 2.

Maximum Principle U = 0

outiscle T I
This ends

up
the proof of Corallory2

E



⑮

The idea of the proof of Theora
Assume first that I is FLAT :

M = [- 1
, 1]

We need to how that u(z)
&

a ingular at z = -1 and

z = + f
.
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⑮

The idea of the proof of Theora
Assume fist that

M = [- 1
, 1]

We need to how that u(z)
&

a ingular at z = -1 and

z = + f
.

Recall
*

(3) ro(z) = Slogle-slg(s) dis
- p

where
S
can be solved from

8

(y) court = -
,

logne-s1g(s)ds

Physically u in the elch's potential
< voltage (and g(t) the change
density on I.



⑯

B
y differenting (5) with respect
to variable t me get

↑

Ms
1) It = 0

+I
(s) S

Hence of is in the kensel of

the local Hilbert tromefrom II.
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B
y differenting (g) m

.
r

. t .

to variable t me get
↑

Ms
1) It = 0

+I
(s) S

Hence of is in the kensel of

the local Hilbert tromefrom II.
For IR

,
2 = Sie is an

somorphism
J = - I and

u +i
S

u
,

v
S 148

has a holom
.
extension from

R to K + F)
v =Hu



⑯

B
y differenting (g) m

.
r

. t .

to variable t me get
↑

Ms
1) It = 0

+I
(s) S

Hence of is in the kensel

the local Hilbert tromefrom II.
For IR

,
2 = Sie is an

somorphism
J = - I and

u +i
S

u
,

v
S 148

has a cont extension from
Rok + ()

v =Hu

=> Theory of Hardy-grace
Hi<IR)
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# dySpaceHo
⑰

# 8 : k
+
-> k

&

belongs to Hi<K+) = Hi(R)

If is bounded mem o-point I
and flie "L"CR) and

8 is complex-analytic
So f = u + iv

the Dient

Theorem holds

Theorem f = n + iN HP(
+ )-

iff v = Hu

neities : is a ingular near the tipps>

of 5 + 0
I

solve

(x) cuppg < I

say Ig
< R3 I



⑤
Look at the function
f(z): in KViR-
-1 - z2

Ther

EHICK)
,

1 < p > >

f = g + ij
& (A)= + S St < /

j() =mX, It's /

& (z)

I I &

K
+

- I & g
X

X

*

*
X



⑤
The function
I(2) = ↑ in KViR--

-1 - z2

belongs to
HT((n)

f = g + ij
& (A)= (H)

,
i = 1

, ]

(a) = Xel , IRI

The S is the solution of

suggeg
I

I g = 0 on I

and all non-zero solutions

are singular at the tig of I .



⑲
What about credsevens 2.

Y

fr -

-
① -

Usa Riemann Mapping Theom
in E := Kusab => -Y

=

I

5 : It -I
,

I shoomasphic.



⑲
What about credsevens 2.

Y

fr -

-
① -

Usa Riemann Mapping Theom
-

=

in K := Kusab => Y
I

5 : It -I
,

I shoomasphic.

Carathrodory's piend
theory =-extension-

of y to 1 >I
&

singularities in I shiff over
to N by the inverse of Y.



⑮

If J : et, de is a smooth
-

Riemann-map these

- mooth injective
extension to 22.

#) - ,
and of

,
are Jordans

domains &

unfortunately Mc = T

&

- not a Jordan domain



If J : et, ->de is the

Riemann-map these

- mooth injective
extension to 22.

#) - ,
and of

,
are Jordans

domains

unfortunately Mc = T

&

- not a Jordan domain
Y Y()
-

St *
-

& ↑
c

PRIME END THEORY*Es The Day 8 Y()



⑳o
Ivecens in IRS

We
say

that as seveen<R
&

a flat if I plane TCR 1 .
t.

2cT
.

The answer to Schiffe's problem
in positive f both

-the acomtic sallerin
A

T
(Blasten- P

. -Sadique 2021)

and for electrodynamic ratting I
(Maxwell's equations (
(P

. -Ola-Sudique (2023)

Theorem Both the seven [-
-

and the supposing plane T
are uniquels libimned by
one ratting measurement.
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