DIRECT AND INVERSE SPHERICALLY SYMMETRIC TRANSMISSION EIGENVALUE PROBLEMS: PAST, PRESENT, AND FUTURE

Nikolaos Pallikarakis

March 2025

Department of Mathematics, National Technical University of Athens

International Biweekly Online Seminar On Analysis, Differential Equations and Mathematical Physics

OUTLINE

Introduction

Acoustic scattering for an inhomogeneous medium The interior Transmission Eigenvalue Problem for general domains Direct and inverse Transmission Eigenvalue Problems The spherically symmetric Transmission Eigenvalue Problem Direct Problem 1: Existence for $\ell > 0$ Direct Problem 2: Existence for $\ell = 0$ Inverse Problem 1: Uniqueness for $\ell \geq 0$ Inverse Problem 2: Uniqueness for $\ell = 0$ The discontinuous spherically symmetric problem Some interesting open problems

Solving TEP with Neumann Series of Bessel Functions

INTRODUCTION

THE ACOUSTIC SCATTERING PROBLEM

THE ACOUSTIC SCATTERING PROBLEM

Acoustic scattering by inhomogeneous medium $D \subset \mathbb{R}^d, \ d = 2, 3$:

$$\begin{aligned} \Delta u + k^2 n(x)u &= 0 & \text{in } \mathbb{R}^d \\ u &= u^i + u^s & \text{in } \mathbb{R}^d \\ \lim_{r \to \infty} r^{\frac{d-1}{2}} \left(\frac{\partial u^s}{\partial r} - iku^s \right) &= 0 \end{aligned}$$

k > 0 is the wavenumber and n(x) the refractive index,

Acoustic scattering by inhomogeneous medium $D \subset \mathbb{R}^d, \ d = 2, 3$:

$$\Delta u + k^2 \frac{n(x)u}{u} = 0 \qquad \text{in } \mathbb{R}^d$$
$$u = u^i + u^s \qquad \text{in } \mathbb{R}^d$$
$$\lim_{r \to \infty} r^{\frac{d-1}{2}} \left(\frac{\partial u^s}{\partial r} - iku^s\right) = 0$$

k > 0 is the wavenumber and n(x) the refractive index,

$$n(x) \in \mathcal{L}^{\infty}(D), \ n(x) = 1 \text{ for } x \in \mathbb{R}^d \setminus D$$

Acoustic scattering by inhomogeneous medium $D \subset \mathbb{R}^d, \ d = 2, 3$:

$$\Delta u + k^2 \mathbf{n}(\mathbf{x})u = 0 \qquad \text{in } \mathbb{R}^a$$
$$u = u^i + u^s \qquad \text{in } \mathbb{R}^a$$
$$\lim_{r \to \infty} r^{\frac{d-1}{2}} \left(\frac{\partial u^s}{\partial r} - iku^s\right) = 0$$

k > 0 is the wavenumber and n(x) the refractive index,

$$n(x) \in \mathcal{L}^{\infty}(D), \ n(x) = 1 \text{ for } x \in \mathbb{R}^d \setminus D$$

Direct Problem: existence, uniqueness and stability for $u \in H^2_{loc}(\mathbb{R}^d)$ Inverse Problem: recover n(x), and ∂D from scattering data \rhd for incident plane wave: $u^i(x)=e^{ikx\cdot\hat{\theta}},\,\hat{\theta}:$ direction of propagation the scattered field satisfies:

$$u^{s}(x) = e^{ikr} r^{-\frac{d-1}{2}} u_{\infty}(\hat{x}) + O\left(r^{-\frac{d+1}{2}}\right), \text{ in } \mathbb{R}^{d}, \ r = |x| \to \infty$$

where $\hat{x}=x/|x|$ and u_∞ is the far-field pattern:

$$u_{\infty}(\hat{x}) := \frac{k^2}{4\pi} \int_{\mathbb{R}^d} (n(y) - 1) e^{-ik\hat{x} \cdot y} u(y) \mathrm{d}y, \quad \hat{x} \in \Omega = \{x \in \mathbb{R}^d : |x| = 1\}$$

 \rhd for incident plane wave: $u^i(x)=e^{ikx\cdot\hat{\theta}},\,\hat{\theta}:$ direction of propagation the scattered field satisfies:

$$u^{s}(x) = e^{ikr} r^{-\frac{d-1}{2}} u_{\infty}(\hat{x}) + O\left(r^{-\frac{d+1}{2}}\right), \text{ in } \mathbb{R}^{d}, \ r = |x| \to \infty$$

where $\hat{x} = x/|x|$ and u_{∞} is the far-field pattern:

$$u_{\infty}(\hat{x}) := \frac{k^2}{4\pi} \int_{\mathbb{R}^d} \left(n(y) - 1 \right) e^{-ik\hat{x} \cdot y} u(y) \mathrm{d}y, \quad \hat{x} \in \Omega = \{ x \in \mathbb{R}^d : |x| = 1 \}$$

 \triangleright the far-filed patterns define the far-field operator: $F: \mathcal{L}^2(\Omega) \to \mathcal{L}^2(\Omega)$

$$(Fg)\left(\hat{x} \right) := \int_{\Omega} u_{\infty}(\hat{x}; \hat{\theta}) g(\hat{\theta}) \mathrm{d}s(\hat{\theta}) \qquad \hat{x} \in \Omega,$$

Theorem (Colton-Kress ¹)

The far-field operator is injective and has dense range if and only if k is not a transmission eigenvalue and (w, v) solves the Interior Transmission Problem, for v a Herglotz wave function.

 1 Inverse Acoustic and Electromagnetic Scattering Theory, 4^{th} Edn., Springer, 2019.

Interior Transmission Eigenvalue Problem:

Find $k \in \mathbb{C}$ and $v, w \in \mathcal{L}^2(D)$ such that $w - v \in H^2_0(D)$:

$\Delta w + k^2 n(x) w = 0$	in D ,
$\Delta v + k^2 v = 0$	in D ,
w = v	on ∂D ,
$\frac{\partial w}{\partial \nu} = \frac{\partial v}{\partial \nu}$	on ∂D .

Interior Transmission Eigenvalue Problem:

Find $k \in \mathbb{C}$ and $v, w \in \mathcal{L}^2(D)$ such that $w - v \in H^2_0(D)$:

$\Delta w + k^2 n(x) w = 0$	in D ,
$\Delta v + k^2 v = 0$	in D ,
w = v	on ∂D ,
$\frac{\partial w}{\partial \nu} = \frac{\partial v}{\partial \nu}$	on ∂D .

 $k \in \mathbb{C}$ such that $(v, w) \neq 0$ are the Transmission Eigenvalues (TE)

Interior Transmission Eigenvalue Problem: Find $k \in \mathbb{C}$ and $v, w \in \mathcal{L}^2(D)$ such that $w - v \in H_0^2(D)$:

$\Delta w + k^2 \mathbf{n}(\mathbf{x}) w = 0$	in D ,
$\Delta v + k^2 v = 0$	in D ,
w = v	on ∂D ,
$\frac{\partial w}{\partial \nu} = \frac{\partial v}{\partial \nu}$	on ∂D .

 $k \in \mathbb{C}$ such that $(v, w) \neq 0$ are the Transmission Eigenvalues (TE)

* ITEP is a non-standard and non-self-adjoint eigenvalue problem

Interior Transmission Eigenvalue Problem: Find $k \in \mathbb{C}$ and $v, w \in \mathcal{L}^2(D)$ such that $w - v \in H^2_0(D)$:

$\Delta w + k^2 \mathbf{n}(\mathbf{x}) w = 0$	in D ,
$\Delta v + k^2 v = 0$	in D ,
w = v	on ∂D ,
$\frac{\partial w}{\partial \nu} = \frac{\partial v}{\partial \nu}$	on ∂D .

 $k \in \mathbb{C}$ such that $(v, w) \neq 0$ are the Transmission Eigenvalues (TE)

- * ITEP is a non-standard and non-self-adjoint eigenvalue problem
- * If k is not a TE \Rightarrow use far-field to recover ∂D with sampling methods ²

²Cakoni and Colton, A Qualitative Approach to Inverse Scattering Theory, Springer, 2014.

Interior Transmission Eigenvalue Problem: Find $k \in \mathbb{C}$ and $v, w \in \mathcal{L}^2(D)$ such that $w - v \in H^2_0(D)$:

$\Delta w + k^2 \mathbf{n}(\mathbf{x}) w = 0$	in D ,
$\Delta v + k^2 v = 0$	in D ,
w = v	on ∂D ,
$\frac{\partial w}{\partial \nu} = \frac{\partial v}{\partial \nu}$	on ∂D .

 $k \in \mathbb{C}$ such that $(v, w) \neq 0$ are the Transmission Eigenvalues (TE)

- * ITEP is a non-standard and non-self-adjoint eigenvalue problem
- * If k is not a TE \Rightarrow use far-field to recover ∂D with sampling methods ²
- * TE are related to non-scattering wavenumbers ³

²Cakoni and Colton, A Qualitative Approach to Inverse Scattering Theory, Springer, 2014.

³Cakoni, Colton and Haddar, Transmission Eigenvalues, Not. Am. Math. Soc., 2021.

existence, discreteness and localization of the spectrum Inverse Eigenvalue Problem: recover n(x) from spectral data

existence, discreteness and localization of the spectrum Inverse Eigenvalue Problem: recover n(x) from spectral data

 \rhd existence of an infinite and discrete set of TE, for n>1 or 0 < n < 1 Cakoni-Gintides-Haddar 4

⁴The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 2010

existence, discreteness and localization of the spectrum Inverse Eigenvalue Problem: recover n(x) from spectral data

 \rhd existence of an infinite and discrete set of TE, for n>1 or 0 < n < 1 Cakoni-Gintides-Haddar 4

▷ Motivation for the inverse problem:

 \ast real transmission eigenvalues can be measured from scattering data: Cakoni-Colton-Haddar 5

⁴The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 2010

⁵ On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Acad. Sci., 2010

existence, discreteness and localization of the spectrum Inverse Eigenvalue Problem: recover n(x) from spectral data

 \rhd existence of an infinite and discrete set of TE, for n>1 or 0 < n < 1 Cakoni-Gintides-Haddar 4

▷ Motivation for the inverse problem:

 \ast real transmission eigenvalues can be measured from scattering data: Cakoni-Colton-Haddar 5

 \ast transmission eigenvalues carry information about material properties:

Cakoni-Çayören-Colton⁶, Harris⁷

⁴The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 2010

⁵On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Acad. Sci., 2010

 $^{^{6}\}ensuremath{\mathsf{Transmission}}$ eigenvalues and the nondestructive testing of dielectrics, Inv. Probl., 2008.

⁷Non-destructive testing of anisotropic materials, Ph.D. thesis, Univ. of Delaware, 2015.

THE SPHERICALLY SYMMETRIC TRANSMISSION EIGENVALUE PROBLEM

Literature Review:

- \ast Colton and Kress 8 , Chapter 10
- * Kirsch 9, Chapter 7.6
- \ast Cakoni and Colton $^{10},$ Chapter 9
- * Cakoni, Colton and Haddar ¹¹, Chapter 9

 $^{^{8}}$ Inverse Acoustic and Electromagnetic Scattering Theory, 4^{th} Edn., Springer, 2019.

 $^{^9}$ An Introduction to the Mathematical Theory of Inverse Problems, 3^{rd} Edn., Springer, 2021.

 $^{^{10}\}mathrm{A}$ Qualitative Approach to Inverse Scattering Theory, Springer, 2014.

 $^{^{11}{\}rm Inverse}$ Scattering Theory and Transmission Eigenvalues, $2^{n\,d}$ Edn., SIAM, 2022.

Literature Review:

- \ast Colton and Kress 8 , Chapter 10
- * Kirsch 9, Chapter 7.6
- * Cakoni and Colton ¹⁰, Chapter 9
- * Cakoni, Colton and Haddar ¹¹, Chapter 9

* Pallikarakis (invited review article) ¹²

 $^{^{\}rm 8}$ Inverse Acoustic and Electromagnetic Scattering Theory, $4^{th}\,$ Edn., Springer, 2019.

 $^{^9}$ An Introduction to the Mathematical Theory of Inverse Problems, 3^{rd} Edn., Springer, 2021.

¹⁰A Qualitative Approach to Inverse Scattering Theory, Springer, 2014.

 $^{^{11}}$ Inverse Scattering Theory and Transmission Eigenvalues, 2^{nd} Edn., SIAM, 2022.

 $^{^{12}}$ A review on the direct and inverse transmission eigenvalue problem for the spherically symmetric refractive index, Bol. Soc. Mat. Mex., 2024.

PROBLEM 1: The spherically symmetric TEP, $\ell \ge 0$

Consider the ITEP for D = unit ball of \mathbb{R}^3 , in spherical coordinates:

$$v(r,\theta) = \alpha_{\ell} j_{\ell}(kr) P_{\ell}(\cos\theta), \ w(r,\theta) = \beta_{\ell} \frac{y_{\ell}(r)}{r} P_{\ell}(\cos\theta)$$

$$v(r,\theta) = \alpha_{\ell} j_{\ell}(kr) P_{\ell}(\cos\theta), \ w(r,\theta) = \beta_{\ell} \frac{y_{\ell}(r)}{r} P_{\ell}(\cos\theta)$$

▷ I.V.P. for the radial component, $\ell \ge 0$:

$$y_{\ell}^{''}(r) + \left(k^2 \frac{n(r)}{r} - \frac{\ell(\ell+1)}{r^2}\right) y_{\ell}(r) = 0, \quad \lim_{r \to 0} \left(\frac{y_{\ell}(r)}{r} - j_{\ell}(kr)\right) = 0$$

$$v(r,\theta) = \alpha_{\ell} j_{\ell}(kr) P_{\ell}(\cos \theta), \ w(r,\theta) = \beta_{\ell} \frac{y_{\ell}(r)}{r} P_{\ell}(\cos \theta)$$

▷ I.V.P. for the radial component, $\ell \ge 0$:

$$y_{\ell}^{''}(r) + \left(k^2 n(r) - \frac{\ell(\ell+1)}{r^2}\right) y_{\ell}(r) = 0, \quad \lim_{r \to 0} \left(\frac{y_{\ell}(r)}{r} - j_{\ell}(kr)\right) = 0$$

 $k \in \mathbb{C}$ is a transmission eigenvalue iff

$$D_{\ell}(k) := det \begin{pmatrix} y_{\ell}(1) & -j_{\ell}(k) \\ \\ \frac{d}{dr} \left(\frac{y_{\ell}(r)}{r}\right)_{r=1} & -kj'_{\ell}(k) \end{pmatrix} = 0, \qquad \ell = 0, 1, \dots$$

 $* D_{\ell}(k)$ is the characteristic function of the problem

$$v(r,\theta) = \alpha_{\ell} j_{\ell}(kr) P_{\ell}(\cos \theta), \ w(r,\theta) = \beta_{\ell} \frac{y_{\ell}(r)}{r} P_{\ell}(\cos \theta)$$

▷ I.V.P. for the radial component, $\ell \ge 0$:

$$y_{\ell}^{''}(r) + \left(k^2 n(r) - \frac{\ell(\ell+1)}{r^2}\right) y_{\ell}(r) = 0, \quad \lim_{r \to 0} \left(\frac{y_{\ell}(r)}{r} - j_{\ell}(kr)\right) = 0$$

 $k \in \mathbb{C}$ is a transmission eigenvalue iff

$$D_{\ell}(k) := det \begin{pmatrix} y_{\ell}(1) & -j_{\ell}(k) \\ \\ \frac{d}{dr} \left(\frac{y_{\ell}(r)}{r}\right)_{r=1} & -kj'_{\ell}(k) \end{pmatrix} = 0, \qquad \ell = 0, 1, \dots$$

 $* D_{\ell}(k)$ is the characteristic function of the problem

 \triangleright the above introduce a B.V.P. for each y_{ℓ} , with the spectral parameter at the right end-point

$$v(r,\theta) = \alpha_{\ell} j_{\ell}(kr) P_{\ell}(\cos \theta), \ w(r,\theta) = \beta_{\ell} \frac{y_{\ell}(r)}{r} P_{\ell}(\cos \theta)$$

▷ I.V.P. for the radial component, $\ell \ge 0$:

$$y_{\ell}^{''}(r) + \left(k^2 n(r) - \frac{\ell(\ell+1)}{r^2}\right) y_{\ell}(r) = 0, \quad \lim_{r \to 0} \left(\frac{y_{\ell}(r)}{r} - j_{\ell}(kr)\right) = 0$$

 $k \in \mathbb{C}$ is a transmission eigenvalue iff

$$D_{\ell}(k) := det \begin{pmatrix} y_{\ell}(1) & -j_{\ell}(k) \\ \\ \frac{d}{dr} \left(\frac{y_{\ell}(r)}{r}\right)_{r=1} & -kj'_{\ell}(k) \end{pmatrix} = 0, \qquad \ell = 0, 1, \dots$$

 $* D_{\ell}(k)$ is the characteristic function of the problem

 \triangleright the above introduce a B.V.P. for each y_{ℓ} , with the spectral parameter at the right end-point

(We will assume that n is not absorbing, i.e. Im(n) = 0.)

Consider the ITEP for axially symmetric eigenfunctions, i.e., $\ell = 0$:

$$v_0(r) = \alpha_0 j_0(kr), \ w_0(r) = \beta_0 \frac{y_0(r)}{r}$$

Consider the ITEP for axially symmetric eigenfunctions, i.e., $\ell = 0$:

$$v_0(r) = \alpha_0 j_0(kr), \ w_0(r) = \beta_0 \frac{y_0(r)}{r}$$

▷ I.V.P. for $\ell = 0$:

$$y_0''(r) + k^2 n(r) y_0(r) = 0, \ y_0(0) = 0, \ y'(0) = 1,$$

Consider the ITEP for axially symmetric eigenfunctions, i.e., $\ell = 0$:

$$v_0(r) = \alpha_0 j_0(kr), \ w_0(r) = \beta_0 \frac{y_0(r)}{r}$$

▷ I.V.P. for $\ell = 0$:

$$y_0''(r) + k^2 n(r) y_0(r) = 0, \quad y_0(0) = 0, \quad y'(0) = 1,$$

 $k \in \mathbb{C}$ is a special transmission eigenvalue iff

$$D_0(k) := \frac{\sin k}{k} y'(1) - y_0(0) \cos k = 0$$

 \triangleright $D_0(k)$ is the characteristic function of the problem

Existence and discreteness for TE: by Colton and Monk $^{\rm 13}$, Colton and Päivärinta $^{\rm 14}$

 $^{^{13}}$ The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium, Q. J. Mech. Appl. Math., 1988

 $^{^{14}\}mathsf{Far-field}$ patterns for electromagnetic waves in an inhomogeneous medium, SIAM J. Math. Anal.,1990

Existence and discreteness for TE: by Colton and Monk $^{\rm 13},$ Colton and Päivärinta $^{\rm 14}$

▷ Application of the Liouville Transformation:

$$\xi(r) := \int_0^r \sqrt{n(t)} dt, \qquad y_\ell(r) = z_\ell(\xi) n(r)^{-1/4},$$

introduces the Schrödinger equation:

$$\ddot{z}_{\ell}(\xi) + \left(k^2 - rac{\ell(\ell+1)}{\xi^2} - g(\xi)
ight) z_{\ell}(\xi) = 0, \qquad 0 < \xi < \delta := \int_0^1 \sqrt{n(t)} \mathrm{d}t$$

where

$$g(\xi) := \frac{\ell(\ell+1)}{r^2 n(r)} - \frac{\ell(\ell+1)}{\xi^2} + \frac{n''(r)}{4n(r)^2} - \frac{5}{16} \frac{n'(r)^2}{n(r)^3}$$

¹³The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium, Q. J. Mech. Appl. Math., 1988
¹⁴Far-field patterns for electromagnetic waves in an inhomogeneous medium, SIAM J. Math. Anal., 1990

 \triangleright for large values of k and $\delta \neq 1$:

$$D_{\ell}(k) = \frac{1}{kn(0)^{\ell/2+1/4}} \sin(k(1-\delta)) + O\left(\frac{\ln k}{k^2}\right)$$

▷ for large values of k and $\delta \neq 1$:

$$D_{\ell}(k) = \frac{1}{kn(0)^{\ell/2+1/4}} \sin(k(1-\delta)) + O\left(\frac{\ln k}{k^2}\right)$$

Theorem (Colton - Päivärinta)

Assume that $n(x) = n(r) \in C^2$ is spherically stratified. Also, n(r) = 1 for $r \ge 1$, and n(r) > 1 or 0 < n(r) < 1 for $0 \le r < 1$. Then there exists an <u>infinite</u> set of transmission eigenvalues. ▷ for large values of k and $\delta \neq 1$:

$$D_{\ell}(k) = \frac{1}{kn(0)^{\ell/2+1/4}} \sin(k(1-\delta)) + O\left(\frac{\ln k}{k^2}\right)$$

Theorem (Colton - Päivärinta)

Assume that $n(x) = n(r) \in C^2$ is spherically stratified. Also, n(r) = 1 for $r \ge 1$, and n(r) > 1 or 0 < n(r) < 1 for $0 \le r < 1$. Then there exists an <u>infinite</u> set of transmission eigenvalues.

Theorem (Colton - Monk - Sun¹⁵)

Assume that $n(x) = n(r) \in C^2[0,1]$ is spherically stratified. If $n(r) \not\equiv 1$ then there exists an <u>infinite</u> set of transmission eigenvalues.

¹⁵Analytical and computational methods for transmission eigenvalues, Inv. Probl., 2010.
Existence and discreteness for TE: by Colton and Monk ¹⁶, Colton, Päivärinta and Sylvester ¹⁷

¹⁷The interior transmission problem, Inv. Prob. Imag., 2007

 $^{^{16}}$ The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium, Q. J. Mech. Appl. Math., 1988

Existence and discreteness for TE: by Colton and Monk ¹⁶, Colton, Päivärinta and Sylvester ¹⁷

Application of the Liouville Transformation introduces the Schrödinger equation:

$$\ddot{z}_0(\xi) + (k^2 - \frac{p(\xi)}{20})z_0(\xi) = 0, \quad z_0(0) = 0, \quad 0 < \xi < \delta,$$
$$\left(\frac{\cos k}{n(1)^{1/4}} + \frac{n'(1)}{4n(1)^{5/4}}\frac{\sin k}{k}\right)z_0(\delta) - n(1)^{1/4}\frac{\sin k}{k}\dot{z}_0(\delta) = 0,$$

where

$$p(\boldsymbol{\xi}) := \frac{n''(r)}{4n(r)^2} - \frac{5}{16} \frac{(n'(r))^2}{n(r)^3}.$$

¹⁷The interior transmission problem, Inv. Prob. Imag., 2007

¹⁶The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium, Q. J. Mech. Appl. Math., 1988

 \triangleright for large values of k:

$$D_0(k) = \frac{1}{k} \left[\left(\frac{n(1)}{n(0)} \right)^{1/4} \cos(k\delta) \sin k - \frac{1}{(n(1)n(0))^{1/4}} \sin(k\delta) \cos k \right] + \mathcal{O}\left(\frac{1}{k^2} \right).$$

▷ for large values of k and n(1) = 1, $\delta \neq 1$:

$$D_0(k) = \frac{1}{kn(0)^{1/4}} \sin(k(1-\delta)) + O\left(\frac{1}{k^2}\right)$$

 \triangleright for large values of k:

$$D_0(k) = \frac{1}{k} \left[\left(\frac{n(1)}{n(0)} \right)^{1/4} \cos(k\delta) \sin k - \frac{1}{(n(1)n(0))^{1/4}} \sin(k\delta) \cos k \right] + \mathcal{O}\left(\frac{1}{k^2} \right).$$

▷ for large values of k and n(1) = 1, $\delta \neq 1$:

$$D_0(k) = \frac{1}{kn(0)^{1/4}} \sin(k(1-\delta)) + O\left(\frac{1}{k^2}\right)$$

Theorem (Colton - Päivärinta - Sylvester)

Assume that $n \in C^2[0, 1]$ and either $n(1) \neq 1$ or n(1) = 1 and $\delta \neq 1$. Then there exists an <u>infinite discrete</u> set of transmission eigenvalues with axially symmetric eigenfunctions.

Theorem (Colton - Leung - Meng¹⁸)

Suppose the refractive index $n \in C^2[0,1]$ with n(1) = 1, n'(1) = 0 and $\delta \neq 1$. Then if $n''(1) \neq 0$, there exist infinitely many real eigenvalues.

Theorem (Colton - Leung - Meng)

Let the refractive index $n \in C^2[0, 1]$. Suppose $\delta = 1$ and $n(1) \neq 1$. Then there are at most finitely many complex transmission eigenvalues. However if both $\delta = 1$ and n(1) = 1, then it is possible to have only finitely many real eigenvalues.

 $^{^{18}\}mbox{Distribution}$ of complex transmission eigenvalues for spherically stratified media, Inv. Prob., 2015

Theorem (Colton - Leung¹⁹)

Assume that $n \in C^2[0,1]$ and either $1 < \sqrt{n(1)} < \delta$ or $\delta < \sqrt{n(1)} < 1$. Then there exist infinitely many real and infinitely many complex transmission eigenvalues.

Theorem (Colton - Leung)

Suppose that $n \in C^2[0,1]$ and n(1) = 1, n'(1) = 0, n(r) is non-constant near r = 1 and $\delta \neq 1$. Then there exist infinitely many real and infinitely many complex eigenvalues.

¹⁹The existence of complex transmission eigenvalues for spherically stratified media, Appl. Anal., 2017

Theorem (Colton - Leung)

Assume that $n(1) \neq 1$ and $n \in C^2[0, 1]$. Then if complex eigenvalues exist, all of them lie in a strip parallel to the real axis.

Theorem (Colton - Leung - Meng)

Assume that $n \in C^2[0,1]$ with n(1) = 1 and $\delta \neq 1$. If either $n'(1) \neq 0$ or $n''(1) \neq 0$, the TE do not lie inside a fixed strip parallel to the real axis.

Theorem (Colton - Leung)

Assume that $n(1) \neq 1$ and $n \in C^2[0, 1]$. Then if complex eigenvalues exist, all of them lie in a strip parallel to the real axis.

Theorem (Colton - Leung - Meng)

Assume that $n \in C^2[0,1]$ with n(1) = 1 and $\delta \neq 1$. If either $n'(1) \neq 0$ or $n''(1) \neq 0$, the TE do not lie inside a fixed strip parallel to the real axis.

Theorem (Xu - Xu - Yang²⁰)

Assume that $n \in C^2[0, 1]$, and $\delta = 1$. If either (i) $n(1) \neq 1$, or (ii) n(1) = 1, $n'(1) \neq 0$, or (iii) n(1) = 1, n'(1) = 0, $n''(1) \neq 0$ and $\int_0^1 p(s) ds = 0$. If complex TE exist, lie in a strip parallel to the real axis.

 $^{^{20}}$ Distribution of transmission eigenvalues and inverse spectral analysis with partial information on the refractive index, Math. Meth. Appl. Sci., 2016

Theorem (Colton - Leung)

Assume that $n(1) \neq 1$ and $n \in C^2[0, 1]$. Then if complex eigenvalues exist, all of them lie in a strip parallel to the real axis.

Theorem (Colton - Leung - Meng)

Assume that $n \in C^2[0,1]$ with n(1) = 1 and $\delta \neq 1$. If either $n'(1) \neq 0$ or $n''(1) \neq 0$, the TE do not lie inside a fixed strip parallel to the real axis.

Theorem (Xu - Xu - Yang²⁰)

Assume that $n \in C^2[0, 1]$, and $\delta = 1$. If either (i) $n(1) \neq 1$, or (ii) n(1) = 1, $n'(1) \neq 0$, or (iii) n(1) = 1, n'(1) = 0, $n''(1) \neq 0$ and $\int_0^1 p(s) ds = 0$. If complex TE exist, lie in a strip parallel to the real axis. However, if n(1) = 1, n'(1) = 0, $n''(1) \neq 0$, and $\int_0^1 p(s) ds \neq 0$, then infinitely complex TE exist, and do not lie inside a fixed strip parallel to the real axis.

²⁰Distribution of transmission eigenvalues and inverse spectral analysis with partial information on the refractive index, Math. Meth. Appl. Sci., 2016

* Distribution of transmission eigenvalues: Petkov - Vodev²¹, Sylvester ²²

 $^{^{21}}$ Localization of the interior transmission eigenvalues for a ball, Inv. Probl. Imag., 2017.

²² Transmission eigenvalues in one dimension, Inv. Probl.,2013.

* Distribution of transmission eigenvalues:
 Petkov - Vodev²¹, Sylvester ²²

* Asymptotic formulas:

McLaughlin - Polyakov^{23}, $% = Xu - Xu - Wang, Xu - Yang - Buterin - Yurko ^{24}, Wang - Shieh^{25}$

²¹ Localization of the interior transmission eigenvalues for a ball, Inv. Probl. Imag., 2017.

²² Transmission eigenvalues in one dimension, Inv. Probl.,2013.

²³On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues, J. Differ. Equ., 1994.

 $^{^{24}}$ Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem. Electron, J. Qual. Theory Differ. Equ. 2019.

²⁵ The inverse interior transmission eigenvalue problem with mixed spectral data, Appl. Math. Comput., 2019.

* Distribution of transmission eigenvalues:

Petkov - Vodev²¹, Sylvester ²²

* Asymptotic formulas:

McLaughlin - Polyakov^{23}, $% = Xu - Xu - Wang, Xu - Yang - Buterin - Yurko ^{24}, Wang - Shieh^{25}$

* Absorbing media:
 Cakoni - Colton - Haddar ²⁶

 $^{^{21}}$ Localization of the interior transmission eigenvalues for a ball, Inv. Probl. Imag., 2017.

²² Transmission eigenvalues in one dimension, Inv. Probl.,2013.

²³On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues, J. Differ. Equ., 1994.

 $^{^{24}}$ Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem. Electron, J. Qual. Theory Differ. Equ. 2019.

²⁵ The inverse interior transmission eigenvalue problem with mixed spectral data, Appl. Math. Comput., 2019.

²⁶The interior transmission eigenvalue problem for absorbing media, Inv. Probl., 2012.

Can the knowledge of the spectrum $\{k_j\}_{j=1}^{\infty}, \ (\forall \ell \ge 0),$ uniquely determine n(r)?

Can the knowledge of the spectrum $\{k_j\}_{j=1}^{\infty}, \ (\forall \ell \ge 0),$ uniquely determine n(r)?

Theorem (Cakoni - Colton - Gintides ²⁷)

If n(0) is known, then n(r) is uniquely determined from all TE ($\forall l \ge 0$), if $n \in C^2[0, \infty)$ and n > 1 or 0 < n < 1.

 $^{^{\}rm 27}{\rm The}$ interior transmission eigenvalue problem, SIAM J. Math. Anal., 2010

Uniquely determine n(r) from the special spectrum $\{k_j\}_{j=1}^{\infty}$, (for $\ell = 0$).

Uniquely determine n(r) from the special spectrum $\{k_j\}_{j=1}^{\infty}$, (for $\ell = 0$).

Theorem (McLaughlin - Polyakov²⁸)

Let $n(r) > 0, n \in C^1(\mathbb{R}), n'' \in \mathcal{L}^2[0, 1]$, and n(1) = 1, n'(1) = 0.

If $\delta \leq 1/3$, then n(r) is uniquely determined from an appropriate subsequence of the spectrum. For $\delta > 1/3$, $\delta \neq 1$ *n* is determined in a subinterval.

²⁸On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues, J. Differ. Equ., 1994.

Uniquely determine n(r) from the special spectrum $\{k_j\}_{j=1}^{\infty}$, (for $\ell = 0$).

Theorem (McLaughlin - Polyakov²⁸)

Let $n(r) > 0, n \in C^1(\mathbb{R}), n'' \in \mathcal{L}^2[0, 1]$, and n(1) = 1, n'(1) = 0. If $\delta \leq 1/3$, then $\underline{n(r)}$ is uniquely determined from an appropriate subsequence of the spectrum. For $\delta > 1/3, \ \delta \neq 1 \ n$ is determined in a subinterval.

Theorem (Aktosun - Gintides - Papanicolaou²⁹)

If $\delta < 1$, then the spherically symmetric TE uniquely determine n(r).

²⁸On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues, J. Differ. Equ., 1994.

 29 The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation, Inv. Prob., 2011

Uniquely determine n(r) from the special spectrum $\{k_j\}_{j=1}^{\infty}$, (for $\ell = 0$).

Theorem (McLaughlin - Polyakov²⁸)

Let $n(r) > 0, n \in C^1(\mathbb{R}), n'' \in \mathcal{L}^2[0, 1]$, and n(1) = 1, n'(1) = 0. If $\delta \leq 1/3$, then $\underline{n(r)}$ is uniquely determined from an appropriate subsequence of the spectrum. For $\delta > 1/3, \ \delta \neq 1 \ n$ is determined in a subinterval.

Theorem (Aktosun - Gintides - Papanicolaou²⁹)

If $\delta < 1$, then the spherically symmetric TE uniquely determine n(r).

Theorem (Colton - Leung ³⁰)

If $n \in C^2[0,1]$, n(0) is known and 0 < n < 1, then the spherically symmetric TE uniquely determine n(r).

 $^{^{28}}$ On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues, J. Differ. Equ., 1994.

 $^{^{29}}$ The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation, Inv. Prob., 2011

 $^{^{30}\}mathrm{Complex}$ eigenvalues and the inverse spectral problem for transmission eigenvalues, Inv. Probl., 2013

Theorem (Aktosun - Gintides - Papanicolaou)

If $\delta = 1$, then the spherically symmetric TE together with the constant coefficient γ of the $D_0(k)$ Hadamard's factorization uniquely determine n(r).

Theorem (Aktosun - Gintides - Papanicolaou)

If $\delta = 1$, then the spherically symmetric TE together with the constant coefficient γ of the $D_0(k)$ Hadamard's factorization uniquely determine n(r).

Theorem (Buterin - Yang - Yurko³¹)

If $\delta = 1$, then the spherically symmetric TE without the constant coefficient γ cannot determine n(r) uniquely.

 $^{^{31}}$ On an open question in the inverse transmission eigenvalue problem, Inv. Probl., 2015

Theorem (Aktosun - Gintides - Papanicolaou)

If $\delta = 1$, then the spherically symmetric TE together with the constant coefficient γ of the $D_0(k)$ Hadamard's factorization uniquely determine n(r).

Theorem (Buterin - Yang - Yurko³¹)

If $\delta = 1$, then the spherically symmetric TE without the constant coefficient γ cannot determine n(r) uniquely.

Theorem (Wei - Xu³²)

If $\delta = 1$, and either (i) $n(1) \neq 1$ is known, or (ii) n(1) = 1 and $n \in C^{(m)}(1 - \alpha, 1]$ for some $\alpha > 0$ and some $m \in \mathbb{N}$ which satisfies $n^{(j)} = 0$ for $j = 1, \ldots, m - 1$ and $n^{(m)}(1) \neq 0$ is known, then the spherically symmetric TE uniquely determine n(r).

³¹On an open question in the inverse transmission eigenvalue problem, Inv. Probl., 2015

³²Inverse spectral analysis for the transmission eigenvalue problem, Inv. Probl., 2013.

Comments (Aktosun - Gintides - Papanicolaou) and (Wei - Xu)

If $\delta > 1$, then the spherically symmetric TE cannot determine n(r) uniquely.

Comments (Aktosun - Gintides - Papanicolaou) and (Wei - Xu)

If $\delta > 1$, then the spherically symmetric TE cannot determine n(r) uniquely.

Theorem (Xu - Yang -Buterin - Yurko ³³)

Assume that $n \in W_2^{m+3}[0,1]$ for some $m \in \mathbb{N}_0 := \{0\} \cup \mathbb{N}$. Also, let n(1) = 1, $n^{(u)}(1) = 0$ for $u = \overline{1, m+1}$ and $n^{(m+2)}(1) \neq 0$. If $\delta > 1$ and n(r) is known in $[\epsilon, 1]$ with ϵ satisfying

$$\int_{\epsilon}^{1} \sqrt{n(t)} \mathrm{d}t = \frac{A-1}{2},$$

 $\Rightarrow n(r)$ is uniquely determined by all zeros of $D_0(k)$, including multiplicity.

³³Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem. Electron, J. Qual. Theory Differ. Equ. 2019.

Bondarenko - Buterin $^{34},\;\;$ Buterin - Choque-Rivero - Kuznetsova $^{35},\;\;$ Xu - Ma - Yang 36

 $^{^{34}}$ On a local solvability and stability of the inverse transmission eigenvalue problem, Inv. Probl, 2017.

 $^{^{35}}$ On a regularization approach to the inverse transmission eigenvalue problem, Inv. Probl., 2020.

³⁶On the stability of the inverse transmission eigenvalue problem from the data of McLaughlin and Polyakov, J. Differ. Equ., 2022.

Bondarenko - Buterin ³⁴, Buterin - Choque-Rivero - Kuznetsova ³⁵, Xu - Ma - Yang ³⁶ * Isospectral sets: Yang - Buterin ³⁷

 $^{^{34}}$ On a local solvability and stability of the inverse transmission eigenvalue problem, Inv. Probl, 2017.

 $^{^{35}\}text{On}$ a regularization approach to the inverse transmission eigenvalue problem, Inv. Probl., 2020.

 $^{^{36}}$ On the stability of the inverse transmission eigenvalue problem from the data of McLaughlin and Polyakov, J. Differ. Equ., 2022.

³⁷Isospectral sets for transmission eigenvalue problem, J. Inverse III-Posed Probl., 2020.

Bondarenko - Buterin ³⁴, Buterin - Choque-Rivero - Kuznetsova ³⁵, Xu -Ma - Yang ³⁶ * Isospectral sets: Yang - Buterin ³⁷ * Absorbing media: Chen ³⁸

 $^{^{34}}$ On a local solvability and stability of the inverse transmission eigenvalue problem, Inv. Probl, 2017.

 $^{^{35}\}text{On}$ a regularization approach to the inverse transmission eigenvalue problem, Inv. Probl., 2020.

³⁶On the stability of the inverse transmission eigenvalue problem from the data of McLaughlin and Polyakov, J. Differ. Equ., 2022.

³⁷Isospectral sets for transmission eigenvalue problem, J. Inverse III-Posed Probl., 2020.

³⁸A uniqueness theorem on the eigenvalues of spherically symmetric interior transmission problem in absorbing medium, Complex Var. Elliptic Equ., 2015.

Bondarenko - Buterin ³⁴, Buterin - Choque-Rivero - Kuznetsova ³⁵, Xu - Ma - Yang ³⁶ * Isospectral sets: Yang - Buterin ³⁷ * Absorbing media: Chen ³⁸ * Fixed angular-momentum $\ell \geq 1$: Xu - Yang - Xu ³⁹

 $^{^{34}}$ On a local solvability and stability of the inverse transmission eigenvalue problem, Inv. Probl, 2017.

 $^{^{35}\}text{On}$ a regularization approach to the inverse transmission eigenvalue problem, Inv. Probl., 2020.

³⁶On the stability of the inverse transmission eigenvalue problem from the data of McLaughlin and Polyakov, J. Differ. Equ., 2022.

³⁷Isospectral sets for transmission eigenvalue problem, J. Inverse III-Posed Probl., 2020.

³⁸A uniqueness theorem on the eigenvalues of spherically symmetric interior transmission problem in absorbing medium, Complex Var. Elliptic Equ., 2015.

³⁹Inverse transmission eigenvalue problem for fixed angular momentum, Inv. Probl. Imag., 2023.

```
* Stability of the inverse problem:
Bondarenko - Buterin <sup>34</sup>, Buterin - Choque-Rivero - Kuznetsova <sup>35</sup>, Xu -
Ma - Yang <sup>36</sup>
* Isospectral sets:
Yang - Buterin 37
* Absorbing media:
Chen <sup>38</sup>
* Fixed angular-momentum \ell > 1:
Xu - Yang - Xu<sup>39</sup>
* Modified transmission eigenvalues:
Cogar - Colton - Leung<sup>40</sup>, Gintides - Pallikarakis - Stratouras<sup>41</sup>
```

 $^{^{34}}$ On a local solvability and stability of the inverse transmission eigenvalue problem, Inv. Probl, 2017.

 $^{^{35}\}text{On}$ a regularization approach to the inverse transmission eigenvalue problem, Inv. Probl., 2020.

³⁶On the stability of the inverse transmission eigenvalue problem from the data of McLaughlin and Polyakov, J. Differ. Equ., 2022.

³⁷Isospectral sets for transmission eigenvalue problem, J. Inverse III-Posed Probl., 2020.

 $^{^{38}}$ A uniqueness theorem on the eigenvalues of spherically symmetric interior transmission problem in absorbing medium, Complex Var. Elliptic Equ., 2015.

³⁹Inverse transmission eigenvalue problem for fixed angular momentum, Inv. Probl. Imag., 2023.

⁴⁰The inverse spectral problem for transmission eigenvalues, Inv. Probl., 2016.

⁴¹Uniqueness of a spherically symmetric refractive index from modified transmission eigenvalues, Inv. Probl., 2022.

THE DISCONTINUOUS SPHERICALLY SYMMETRIC PROBLEM

▷ Based on results of Gintides - Pallikarakis ⁴² and Pallikarakis ⁴³

⁴²The inverse transmission eigenvalue problem for a discontinuous refractive index, Inv. Probl., 2017.

⁴³The inverse spectral problem for the reconstruction of the refractive index from the interior transmission problem, Ph.D. thesis, NTUA, 2017.
▷ Based on results of Gintides - Pallikarakis ⁴² and Pallikarakis ⁴³

Discontinuous refractive index:

 $n(r) \text{ is } C^2 \text{ in } [0,d) \text{ and } (d,1], \ n(r)=1 \text{ for } r \geq 1, \ n'(1)=0$

⁴²The inverse transmission eigenvalue problem for a discontinuous refractive index, Inv. Probl., 2017.

 $^{^{43}}$ The inverse spectral problem for the reconstruction of the refractive index from the interior transmission problem, Ph.D. thesis, NTUA, 2017

▷ Based on results of Gintides - Pallikarakis ⁴² and Pallikarakis ⁴³

Discontinuous refractive index:

 $n(r) \text{ is } C^2 \text{ in } [0,d) \text{ and } (d,1], \ n(r)=1 \text{ for } r \geq 1, \ n'(1)=0$

⁴²The inverse transmission eigenvalue problem for a discontinuous refractive index, Inv. Probl., 2017.

⁴³The inverse spectral problem for the reconstruction of the refractive index from the interior transmission problem, Ph.D. thesis, NTUA, 2017.

Transformed Problem:

 $\succ \text{ Liouville transf.: } z(\xi) := n(r)^{1/4} y_{\ell}(r), \ \xi(r) := \int_{0}^{r} \sqrt{n(\rho)} d\rho$ $\frac{d^{2}z(\xi)}{d\xi^{2}} + \left(k^{2} - \frac{\ell(\ell+1)}{\xi^{2}} - g(\xi)\right) z(\xi) = 0, \ 0 < \xi \neq \tilde{d}$ $g(\xi) = \frac{\ell(\ell+1)}{r^{2}n(r)} - \frac{\ell(\ell+1)}{\xi^{2}} + \frac{n''(r)}{4n(r)^{2}} - \frac{5n'(r)^{2}}{16n(r)^{3}}$

Transformed Problem:

 $\succ \text{ Liouville transf.: } z(\xi) := n(r)^{1/4} y_{\ell}(r), \ \xi(r) := \int_{0}^{r} \sqrt{n(\rho)} d\rho$ $\frac{d^{2}z(\xi)}{d\xi^{2}} + \left(k^{2} - \frac{\ell(\ell+1)}{\xi^{2}} - g(\xi)\right) z(\xi) = 0, \ 0 < \xi \neq \tilde{d}$ $g(\xi) = \frac{\ell(\ell+1)}{r^{2}n(r)} - \frac{\ell(\ell+1)}{\xi^{2}} + \frac{n^{''}(r)}{4n(r)^{2}} - \frac{5n^{'}(r)^{2}}{16n(r)^{3}}$

where

$$0 < \xi < \delta := \int_0^1 \sqrt{n(t)} dt \quad \text{and} \quad \tilde{d} := \int_0^d \sqrt{n(t)} dt, \quad \tilde{d} \in (0, A)$$

Transformed Problem:

 $\succ \text{ Liouville transf.: } z(\xi) := n(r)^{1/4} y_{\ell}(r), \ \xi(r) := \int_{0}^{r} \sqrt{n(\rho)} d\rho$ $\frac{d^{2}z(\xi)}{d\xi^{2}} + \left(k^{2} - \frac{\ell(\ell+1)}{\xi^{2}} - g(\xi)\right) z(\xi) = 0, \quad 0 < \xi \neq \tilde{d}$ $g(\xi) = \frac{\ell(\ell+1)}{r^{2}n(r)} - \frac{\ell(\ell+1)}{\xi^{2}} + \frac{n''(r)}{4n(r)^{2}} - \frac{5n'(r)^{2}}{16n(r)^{3}}$

where

$$0 < \xi < \delta := \int_0^1 \sqrt{n(t)} dt \quad \text{and} \quad \tilde{d} := \int_0^d \sqrt{n(t)} dt, \quad \tilde{d} \in (0, A)$$

 $\triangleright z$ is discontinuous at $\xi = \tilde{d}$, with conditions:

$$z(\tilde{d}^+) = \tilde{\mathbf{a}} \ z(\tilde{d}^-), \quad \frac{dz(\tilde{d}^+)}{d\xi} = \tilde{\mathbf{a}}^{-1} \frac{dz(\tilde{d}^-)}{d\xi} + \tilde{\mathbf{b}} \ n(\tilde{d}^-)$$

where: $|a - 1| + |b| > 0 \Rightarrow |\tilde{a} - 1| + |\tilde{b}| > 0$ $\tilde{a} = a^{1/4}, \quad \tilde{b} = \frac{1}{4}n(d^-)^{3/4}n(d^+)^{-5/4}b + \frac{1}{4}n'(d^-)n(d^-)^{3/4}n(d^+)^{-9/4}(1 - a^2)$

Asymptotics of the characteristic functions:

Dash for $n(r)\in C^2[0,\infty)$,

if
$$\ell = 0$$
, $D_0(k) = \frac{1}{kn(0)^{1/4}} \sin k(1-\delta) + O\left(\frac{1}{k^2}\right), \ k \to \infty$
if $\ell \ge 1$, $D_\ell(k) = \frac{1}{kn(0)^{\ell/2+1/4}} \sin k(1-\delta) + O\left(\frac{\ln k}{k^2}\right), \ k \to \infty$

Asymptotics of the characteristic functions:

Dash for $n(r)\in C^2[0,\infty)$,

if
$$\ell = 0$$
, $D_0(k) = \frac{1}{kn(0)^{1/4}} \sin k(1-\delta) + O\left(\frac{1}{k^2}\right), \ k \to \infty$
if $\ell \ge 1$, $D_\ell(k) = \frac{1}{kn(0)^{\ell/2+1/4}} \sin k(1-\delta) + O\left(\frac{\ln k}{k^2}\right), \ k \to \infty$

Proposition

 $\vartriangleright \text{ for } n(r) \in \ C^2[0,d) \cup C^2(d,1]:$

$$D_0(k) = \frac{1}{kn(0)^{1/4}} \left[\frac{\tilde{a}^2 + 1}{2\tilde{a}} \sin k(1 - \delta) + \frac{1 - \tilde{a}^2}{2\tilde{a}} \sin k\left(1 - \delta + 2\tilde{d}\right) \right] + O\left(\frac{1}{k^2}\right)$$
$$D_\ell(k) = \frac{1}{kn(0)^{\ell/2 + 1/4}} \left[\frac{\tilde{a}^2 + 1}{2\tilde{a}} \sin k(1 - \delta) + (-1)^{\ell} \frac{1 - \tilde{a}^2}{2\tilde{a}} \sin k\left(1 - \delta + 2\tilde{d}\right) \right] + O\left(\frac{\ln k}{k^2}\right),$$

 \Rightarrow there <u>exists and infinite discrete set</u> of transmission eigenvalues.

Uniqueness Results:

Theorem - uniqueness from eigenvalues for $\ell = 0$

Constants $\underline{\tilde{d}}, \tilde{a}$ are uniquely determined by the special $(\ell = 0)$ transmission eigenvalues, if $|\tilde{a} - 1| + |\tilde{b}| > 0$ and: (1). $\underline{\tilde{d}} \in (0, \delta)$, for $0 < \delta < 1$ (2). $\underline{\tilde{d}} \in (0, \frac{\delta - 1}{2})$ or $\underline{\tilde{d}} \in (\frac{\delta - 1}{2}, \delta - 1) \cup (\delta - 1, \delta)$ for $\delta > 1$

Uniqueness Results:

Theorem - uniqueness from eigenvalues for $\ell=0$

Constants $\underline{\tilde{d}}, \tilde{a}$ are uniquely determined by the special $(\ell = 0)$ transmission eigenvalues, if $|\tilde{a} - 1| + |\tilde{b}| > 0$ and: (1). $\underline{\tilde{d}} \in (0, \delta)$, for $0 < \delta < 1$ (2). $\underline{\tilde{d}} \in (0, \frac{\delta - 1}{2})$ or $\underline{\tilde{d}} \in (\frac{\delta - 1}{2}, \delta - 1) \cup (\delta - 1, \delta)$ for $\delta > 1$

Theorem - uniqueness from all eigenvalues for $\ell \geq 0$

Assume that n(r) is C^2 or p-w C^2 and satisfies the jump conditions, where 0 < n < 1 or n > 1. If n(0) is known, then $\underline{n(r)}$ is uniquely determined by all transmission eigenvalues.

SOME INTERESTING OPEN PROBLEMS

- Existence and distribution of eigenvalues for less smooth refractive indices, e.g. $n \in C.$

- Existence and distribution of eigenvalues for less smooth refractive indices, e.g. $n \in C.$

- Complex eigenvalues for $\ell \geq 1$.

- Existence and distribution of eigenvalues for less smooth refractive indices, e.g. $n \in C.$
- Complex eigenvalues for $\ell \geq 1$.
- Complex eigenvalues for the discontinuous refractive index.

- Existence and distribution of eigenvalues for less smooth refractive indices, e.g. $n \in C.$

- Complex eigenvalues for $\ell \geq 1$.
- Complex eigenvalues for the discontinuous refractive index.
- * Inverse Problem:

- Existence and distribution of eigenvalues for less smooth refractive indices, e.g. $n \in C.$

- Complex eigenvalues for $\ell \geq 1$.
- Complex eigenvalues for the discontinuous refractive index.

* Inverse Problem:

– Uniqueness for less smooth refractive indices, e.g. $n \in C$.

- Existence and distribution of eigenvalues for less smooth refractive indices, e.g. $n \in C.$

- Complex eigenvalues for $\ell \geq 1$.
- Complex eigenvalues for the discontinuous refractive index.
- * Inverse Problem:
 - Uniqueness for less smooth refractive indices, e.g. $n \in C$.
 - Uniqueness from all $\ell \geq 0,$ for refractive index 1-n changing sign.

- Existence and distribution of eigenvalues for less smooth refractive indices, e.g. $n \in C.$

- Complex eigenvalues for $\ell \geq 1$.
- Complex eigenvalues for the discontinuous refractive index.

* Inverse Problem:

- Uniqueness for less smooth refractive indices, e.g. $n \in C$.
- Uniqueness from all $\ell \geq 0,$ for refractive index 1-n changing sign.
- Uniqueness for absorbing media.

- Existence and distribution of eigenvalues for less smooth refractive indices, e.g. $n \in C.$

- Complex eigenvalues for $\ell \geq 1$.
- Complex eigenvalues for the discontinuous refractive index.

* Inverse Problem:

- Uniqueness for less smooth refractive indices, e.g. $n \in C$.
- Uniqueness from all $\ell \geq 0$, for refractive index 1 n changing sign.
- Uniqueness for absorbing media.

* Numerical Methods:

⁴⁴ Distribution of complex transmission eigenvalues for spherically stratified media, Inv. Probl., 2015.

⁴⁵Analytical and computational methods for transmission eigenvalues, Inv. Probl., 2010.

- Existence and distribution of eigenvalues for less smooth refractive indices, e.g. $n \in C.$

- Complex eigenvalues for $\ell \geq 1$.
- Complex eigenvalues for the discontinuous refractive index.

* Inverse Problem:

- Uniqueness for less smooth refractive indices, e.g. $n \in C$.
- Uniqueness from all $\ell \geq 0,$ for refractive index 1-n changing sign.
- Uniqueness for absorbing media.

* Numerical Methods:

- The direct problem can be solved analytically in specific simple cases (Colton - Leung - Meng $^{44})$ or for constant index (Colton - Monk - Sun $^{45}).$

 $^{^{44}}$ Distribution of complex transmission eigenvalues for spherically stratified media, Inv. Probl., 2015.

⁴⁵Analytical and computational methods for transmission eigenvalues, Inv. Probl., 2010.

⁴⁶Reconstruction of a spherically symmetric speed of sound, SIAM J. Appl. Math., 1994.

⁴⁷ Reconstruction for a class of the inverse transmission eigenvalue problem, Math. Meth. Appl. Sci., 2019.

- Existence and distribution of eigenvalues for less smooth refractive indices, e.g. $n \in C.$

- Complex eigenvalues for $\ell \geq 1$.
- Complex eigenvalues for the discontinuous refractive index.

* Inverse Problem:

- Uniqueness for less smooth refractive indices, e.g. $n \in C$.
- Uniqueness from all $\ell \geq 0$, for refractive index 1-n changing sign.
- Uniqueness for absorbing media.

* Numerical Methods:

 The direct problem can be solved analytically in specific simple cases (Colton -Leung - Meng ⁴⁴) or for constant index (Colton - Monk - Sun ⁴⁵).
 Reconstruction schemes for the inverse TEP are considered in:

McLaughlin - Polyakov - Sacks ⁴⁶, Wang - Zhao - Shieh⁴⁷.

 $^{^{44}}$ Distribution of complex transmission eigenvalues for spherically stratified media, Inv. Probl., 2015.

⁴⁵Analytical and computational methods for transmission eigenvalues, Inv. Probl., 2010.

⁴⁶Reconstruction of a spherically symmetric speed of sound, SIAM J. Appl. Math., 1994.

⁴⁷ Reconstruction for a class of the inverse transmission eigenvalue problem, Math. Meth. Appl. Sci., 2019.

- Existence and distribution of eigenvalues for less smooth refractive indices, e.g. $n \in C.$

- Complex eigenvalues for $\ell \geq 1$.
- Complex eigenvalues for the discontinuous refractive index.

* Inverse Problem:

- Uniqueness for less smooth refractive indices, e.g. $n \in C$.
- Uniqueness from all $\ell \geq 0$, for refractive index 1-n changing sign.
- Uniqueness for absorbing media.

* Numerical Methods:

- The direct problem can be solved analytically in specific simple cases (Colton -

Leung - Meng ⁴⁴) or for constant index (Colton - Monk - Sun ⁴⁵).

- Reconstruction schemes for the inverse TEP are considered in:

McLaughlin - Polyakov - Sacks ⁴⁶, Wang - Zhao - Shieh⁴⁷.

A general numerical method for the direct and inverse TEP, using both real and complex TE is open.

⁴⁴ Distribution of complex transmission eigenvalues for spherically stratified media, Inv. Probl., 2015.

⁴⁵Analytical and computational methods for transmission eigenvalues, Inv. Probl., 2010.

⁴⁶Reconstruction of a spherically symmetric speed of sound, SIAM J. Appl. Math., 1994.

⁴⁷ Reconstruction for a class of the inverse transmission eigenvalue problem, Math. Meth. Appl. Sci., 2019.

SOLVING TEP WITH NEUMANN SERIES OF BESSEL FUNCTIONS

 \triangleright A numerical method for the direct and inverse TEP using NSBF: Kravchenko - Murcia-Lozano - Pallikarakis⁴⁸

⁴⁸ Neumann series of Bessel functions in direct and inverse spherically symmetric transmission eigenvalue problems, (working paper).

 \triangleright A numerical method for the direct and inverse TEP using NSBF: Kravchenko - Murcia-Lozano - Pallikarakis⁴⁸

* Let $q \in \mathcal{L}^2(0,L)$ and L > 0. Consider the Sturm-Liouville equation

 $-y'' + \mathbf{q}(x)y = \rho^2 y, \ 0 < x < L, \ \text{and} \ \rho \in \mathbb{C}.$

⁴⁸ Neumann series of Bessel functions in direct and inverse spherically symmetric transmission eigenvalue problems, (working paper).

▷ A numerical method for the direct and inverse TEP using NSBF: Kravchenko - Murcia-Lozano - Pallikarakis⁴⁸

* Let $q \in \mathcal{L}^2(0,L)$ and L > 0. Consider the Sturm-Liouville equation

$$-y'' + \mathbf{q}(x)y = \rho^2 y, \ 0 < x < L, \ \text{and} \ \rho \in \mathbb{C}.$$

* Solutions $S\left(\rho,x
ight),\ \phi(\rho,x)$ and $T\left(\rho,x
ight)$ with initial conditions:

 $S(\rho, 0) = 0, S'(\rho, 0) = 1, \quad T(\rho, L) = 0, T'(\rho, L) = 1, \quad \phi(\rho, 0) = 1, \phi'(\rho, 0) = 0.$ satisfying the identity:

$$T(\rho, x) = \phi(\rho, L)S(\rho, x) - \phi(\rho, x)S(\rho, L).$$

⁴⁸ Neumann series of Bessel functions in direct and inverse spherically symmetric transmission eigenvalue problems, (working paper).

Theorem (Kravchenko - Navarro - Torba ⁴⁹, Kravchenko⁵⁰)

* The solutions $S\left(
ho,x
ight)$ and $\phi(
ho,x)$ have the representation

$$S(\rho, x) = \frac{\sin(\rho x)}{\rho} + \frac{1}{\rho} \sum_{n=0}^{\infty} s_n(x) j_{2n+1}(\rho x), \quad \phi(\rho, x) = \cos(\rho x) + \sum_{n=0}^{\infty} g_n(x) j_{2n}(\rho x),$$

 $j_n(z)$ are spherical Bessel functions of order n.

⁴⁹Representation of solutions to the one-dimensional schrödinger equation in terms of neumann series of bessel functions, Appl. Math. Comput., 2017.

⁵⁰Direct and inverse Sturm-Liouville problems: A method of solution, Springer, 2020.

Theorem (Kravchenko - Navarro - Torba ⁴⁹, Kravchenko⁵⁰)

* The solutions $S\left(
ho,x
ight)$ and $\phi(
ho,x)$ have the representation

$$S(\rho, x) = \frac{\sin(\rho x)}{\rho} + \frac{1}{\rho} \sum_{n=0}^{\infty} s_n(x) j_{2n+1}(\rho x), \qquad \phi(\rho, x) = \cos(\rho x) + \sum_{n=0}^{\infty} g_n(x) j_{2n}(\rho x),$$

 $j_n(z)$ are spherical Bessel functions of order n.

* The series converge pointwise with respect to x for $x \in [0, L]$, and $\forall x \in [0, L]$ converge uniformly in any strip of the complex plane of the variable ρ , parallel to the real axis.

⁴⁹Representation of solutions to the one-dimensional schrödinger equation in terms of neumann series of bessel functions, Appl. Math. Comput., 2017.

⁵⁰Direct and inverse Sturm-Liouville problems: A method of solution, Springer, 2020.

Theorem (Kravchenko - Navarro - Torba ⁴⁹, Kravchenko⁵⁰)

* The solutions $S\left(
ho,x
ight)$ and $\phi(
ho,x)$ have the representation

$$S(\rho, x) = \frac{\sin(\rho x)}{\rho} + \frac{1}{\rho} \sum_{n=0}^{\infty} s_n(x) j_{2n+1}(\rho x), \quad \phi(\rho, x) = \cos(\rho x) + \sum_{n=0}^{\infty} g_n(x) j_{2n}(\rho x),$$

 $j_n(z)$ are spherical Bessel functions of order n.

* The series converge pointwise with respect to x for $x \in [0, L]$, and $\forall x \in [0, L]$ converge uniformly in any strip of the complex plane of the variable ρ , parallel to the real axis.

* The remainders of the partial sums

$$S_N(\rho, x) = \frac{\sin(\rho x)}{\rho} + \frac{1}{\rho} \sum_{n=0}^N s_n(x) j_{2n+1}(\rho x), \quad \phi_N(\rho, x) = \cos(\rho x) + \sum_{n=0}^N g_n(x) j_{2n}(\rho x).$$

satisfy

$$\left|\rho S(\rho,x) - \rho S_N(\rho,x)\right| \leq \frac{\tilde{\varepsilon}_N(x)\sinh\left(Cx\right)}{C} \text{ and } \left|\phi(\rho,x) - \phi_N(\rho,x)\right| \leq \frac{\tilde{\varepsilon}_N(x)\sinh\left(Cx\right)}{C},$$

 $\forall \rho \text{ in } |\rho| \leq C, C > 0$, where $\tilde{\varepsilon}_N(x) > 0$, tending to zero for $N \to \infty$.

⁴⁹Representation of solutions to the one-dimensional schrödinger equation in terms of neumann series of bessel functions, Appl. Math. Comput., 2017.

⁵⁰Direct and inverse Sturm-Liouville problems: A method of solution, Springer, 2020.

Theorem (Kravchenko - Navarro - Torba ⁴⁹, Kravchenko⁵⁰)

* The solutions $S\left(
ho,x
ight)$ and $\phi(
ho,x)$ have the representation

$$S(\rho, x) = \frac{\sin(\rho x)}{\rho} + \frac{1}{\rho} \sum_{n=0}^{\infty} s_n(x) j_{2n+1}(\rho x), \quad \phi(\rho, x) = \cos(\rho x) + \sum_{n=0}^{\infty} g_n(x) j_{2n}(\rho x),$$

 $j_n(z)$ are spherical Bessel functions of order n.

* The series converge pointwise with respect to x for $x \in [0, L]$, and $\forall x \in [0, L]$ converge uniformly in any strip of the complex plane of the variable ρ , parallel to the real axis.

* The remainders of the partial sums

$$S_N(\rho, x) = \frac{\sin(\rho x)}{\rho} + \frac{1}{\rho} \sum_{n=0}^N s_n(x) j_{2n+1}(\rho x), \quad \phi_N(\rho, x) = \cos(\rho x) + \sum_{n=0}^N g_n(x) j_{2n}(\rho x).$$

satisfy

$$\left|\rho S(\rho,x) - \rho S_N(\rho,x)\right| \leq \frac{\tilde{\varepsilon}_N(x)\sinh\left(Cx\right)}{C} \text{ and } \left|\phi(\rho,x) - \phi_N(\rho,x)\right| \leq \frac{\tilde{\varepsilon}_N(x)\sinh\left(Cx\right)}{C}.$$

 $\forall \rho \text{ in } |\rho| \leq C, C > 0$, where $\tilde{e}_N(x) > 0$, tending to zero for $N \to \infty$. * the coefficients s_n, g_n can be calculated from a simple recurrent integration procedure.

⁴⁹Representation of solutions to the one-dimensional schrödinger equation in terms of neumann series of bessel functions, Appl. Math. Comput., 2017.

⁵⁰Direct and inverse Sturm-Liouville problems: A method of solution, Springer, 2020.

SOLVING TEP WITH NSBF

The spherically symmetric TEP (for $\ell = 0$) can be written as:

$$\begin{aligned} -\ddot{z}(\zeta) + \frac{p(\zeta)z(\zeta)}{p(\zeta)} &= k^2 z(\zeta), \quad 0 < \zeta < \delta, \\ z(k,\delta) &= 0, \quad \dot{z}(k,\delta) = -n^{-1/4}(0), \\ D_0(k) &= \left(\frac{\cos k}{n^{1/4}(1)} + \frac{n'(1)\sin k}{4n^{5/4}(1)k}\right) z(k,0) + n^{1/4}(1)\frac{\sin k}{k}\dot{z}(k,0). \end{aligned}$$

SOLVING TEP WITH NSBF

The spherically symmetric TEP (for $\ell = 0$) can be written as:

$$\begin{aligned} -\ddot{z}(\zeta) + p(\zeta)z(\zeta) &= k^2 z(\zeta), \quad 0 < \zeta < \delta, \\ z(k,\delta) &= 0, \quad \dot{z}(k,\delta) = -n^{-1/4}(0), \\ D_0(k) &= \left(\frac{\cos k}{n^{1/4}(1)} + \frac{n'(1)\sin k}{4n^{5/4}(1)k}\right) z(k,0) + n^{1/4}(1)\frac{\sin k}{k}\dot{z}(k,0). \end{aligned}$$

Proposition

The characteristic function $D_0(k)$ is equivalent to

$$D_0(k) = a(k)\phi(k,\delta) + b(k)S(k,\delta), \quad k \in \mathbb{C},$$

where $\phi(k,\zeta)$ and $S(k,\zeta)$ are fundamental solutions of the Sturm-Liouville equation and

$$a(k) := n^{1/4}(1)\frac{\sin k}{k}, \quad b(k) := -\left(\frac{\cos k}{n^{1/4}(1)} + \frac{n'(1)\sin k}{4n^{5/4}(1)\,k}\right)$$

SOLVING TEP WITH NSBF

The spherically symmetric TEP (for $\ell = 0$) can be written as:

$$\begin{aligned} -\ddot{z}(\zeta) + p(\zeta)z(\zeta) &= k^2 z(\zeta), \quad 0 < \zeta < \delta, \\ z(k,\delta) &= 0, \quad \dot{z}(k,\delta) = -n^{-1/4}(0), \\ D_0(k) &= \left(\frac{\cos k}{n^{1/4}(1)} + \frac{n'(1)\sin k}{4n^{5/4}(1)k}\right) z(k,0) + n^{1/4}(1)\frac{\sin k}{k}\dot{z}(k,0). \end{aligned}$$

Proposition

The characteristic function $D_0(k)$ is equivalent to

$$D_0(k) = a(k)\phi(k,\delta) + b(k)S(k,\delta), \quad k \in \mathbb{C},$$

where $\phi(k,\zeta)$ and $S(k,\zeta)$ are fundamental solutions of the Sturm-Liouville equation and

$$a(k) := n^{1/4}(1)\frac{\sin k}{k}, \quad b(k) := -\left(\frac{\cos k}{n^{1/4}(1)} + \frac{n'(1)\sin k}{4n^{5/4}(1)k}\right)$$

Approximate the characteristic function by $D_{0,N}(k) = a(k)\cos(k\delta) + a(k)\sum_{n=0}^{N} g_n(\delta)j_{2n}(k\delta) + b(k)\frac{\sin(k\delta)}{k} + \frac{b(k)}{k}\sum_{n=0}^{N} s_n(\delta)j_{2n+1}(k\delta).$ Refractive Index:

$$\begin{split} n(r) &= \frac{16}{(r+1)^2(3-r)^2}.\\ \text{The corresponding potential}\\ \text{under the Liouville transform}\\ \text{is } p(\zeta(r)) &= 1/4, \text{ and } \zeta \in \\ [0, \log(3)]. \end{split}$$

<u>Refractive Index:</u> $n(r) = \frac{16}{(r+1)^2(3-r)^2}.$ The corresponding potential under the Liouville transform is $p(\zeta(r)) = 1/4$, and $\zeta \in [0, \log(3)].$

Direct Problem: Real and complex transmission eigenvalues.

Refractive Index:

$$\begin{split} n(r) &= \frac{16}{(r+1)^2(3-r)^2}.\\ \text{The corresponding potential}\\ \text{under the Liouville transform}\\ \text{is } p(\zeta(r)) &= 1/4, \text{ and } \zeta \in [0, \log(3)]. \end{split}$$

Direct Problem: Real and complex transmission eigenvalues.

Inverse Problem: Reconstructions of the refractive index.

Inverse Problem: Abs error of the reconstructions.
- 1. N. Pallikarakis, **A review on the direct and inverse transmission** eigenvalue problem for the spherically symmetric refractive index, *Boletín de la Sociedad Matemática Mexicana*, 30, 2024.
- D. Gintides and N. Pallikarakis, The inverse transmission eigenvalue problem for a discontinuous refractive index, *Inverse Problems*, 33, 2017.
- 3. V. V. Kravchenko, L. E. Murcia-Lozano, and N. Pallikarakis, Neumann series of Bessel functions in direct and inverse spherically symmetric transmission eigenvalue problems, (working paper).

- 1. N. Pallikarakis, **A review on the direct and inverse transmission** eigenvalue problem for the spherically symmetric refractive index, *Boletín de la Sociedad Matemática Mexicana*, 30, 2024.
- D. Gintides and N. Pallikarakis, The inverse transmission eigenvalue problem for a discontinuous refractive index, *Inverse Problems*, 33, 2017.
- 3. V. V. Kravchenko, L. E. Murcia-Lozano, and N. Pallikarakis, Neumann series of Bessel functions in direct and inverse spherically symmetric transmission eigenvalue problems, (working paper).

Thank You!!!