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INTRODUCTION



THE ACOUSTIC SCATTERING PROBLEM

ui

us

D

n(x)

incident field scattered field

Acoustic scattering by inhomogeneous medium D ⊂ Rd, d = 2, 3:

∆u + k2n(x)u = 0 in Rd

u = ui + us in Rd

limr→∞ r
d−1

2
(

∂us

∂r
− ikus

)
= 0

k > 0 is the wavenumber and n(x) the refractive index,
n(x) ∈ L∞(D), n(x) = 1 for x ∈ Rd \ D

Direct Problem: existence, uniqueness and stability for u ∈ H2
loc(Rd)

Inverse Problem: recover n(x), and ∂D from scattering data
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FAR-FIELD OPERATOR AND TRANSMISSION EIGENVALUES

▷ for incident plane wave: ui(x) = eikx·θ̂, θ̂: direction of propagation
the scattered field satisfies:

us(x) = eikrr− d−1
2 u∞(x̂) + O

(
r− d+1

2

)
, in Rd, r = |x| → ∞

where x̂ = x/|x| and u∞ is the far-field pattern:

u∞(x̂) := k2

4π

∫
Rd

(n(y) − 1) e−ikx̂·yu(y)dy, x̂ ∈ Ω = {x ∈ Rd : |x| = 1}

▷ the far-filed patterns define the far-field operator: F : L2(Ω) → L2(Ω)

(F g) (x̂) :=
∫

Ω
u∞(x̂; θ̂)g(θ̂)ds(θ̂) x̂ ∈ Ω,

Theorem (Colton-Kress 1)

The far-field operator is injective and has dense range if and only if k is not a
transmission eigenvalue and (w, v) solves the Interior Transmission Problem,
for v a Herglotz wave function.
1Inverse Acoustic and Electromagnetic Scattering Theory, 4th Edn., Springer, 2019.
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THE INTERIOR TRANSMISSION EIGENVALUE PROBLEM (TEP)

Interior Transmission Eigenvalue Problem:
Find k ∈ C and v, w ∈ L2(D) such that w − v ∈ H2

0 (D):

∆w + k2n(x)w = 0 in D,

∆v + k2v = 0 in D,

w = v on ∂D,

∂w
∂ν

= ∂v
∂ν

on ∂D.

k ∈ C such that (v, w) ̸= 0 are the Transmission Eigenvalues (TE)

� ∗ ITEP is a non-standard and non-self-adjoint eigenvalue problem
� ∗ If k is not a TE ⇒ use far-field to recover ∂D with sampling methods 2

� ∗ TE are related to non-scattering wavenumbers 3

2Cakoni and Colton, A Qualitative Approach to Inverse Scattering Theory, Springer, 2014.
3Cakoni, Colton and Haddar, Transmission Eigenvalues, Not. Am. Math. Soc., 2021.
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DIRECT AND INVERSE TRANSMISSION EIGENVALUE PROBLEMS

Direct Eigenvalue Problem:
existence, discreteness and localization of the spectrum
Inverse Eigenvalue Problem: recover n(x) from spectral data

▷ existence of an infinite and discrete set of TE, for n > 1 or 0 < n < 1
Cakoni-Gintides-Haddar 4

▷ Motivation for the inverse problem:

� ∗ real transmission eigenvalues can be measured from scattering data:
� Cakoni-Colton-Haddar 5

� ∗ transmission eigenvalues carry information about material properties:
� Cakoni-Çayören-Colton 6, Harris 7

4The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 2010
5On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Acad. Sci., 2010
6Transmission eigenvalues and the nondestructive testing of dielectrics, Inv. Probl., 2008.
7Non-destructive testing of anisotropic materials, Ph.D. thesis, Univ. of Delaware, 2015.
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THE SPHERICALLY SYMMETRIC TRANSMISSION EIGENVALUE PROBLEM



THE SPHERICALLY SYMMETRIC TEP

Literature Review:

� ∗ Colton and Kress 8, Chapter 10
� ∗ Kirsch 9, Chapter 7.6
� ∗ Cakoni and Colton 10, Chapter 9
� ∗ Cakoni, Colton and Haddar 11, Chapter 9

� ∗ Pallikarakis (invited review article) 12

8Inverse Acoustic and Electromagnetic Scattering Theory, 4th Edn., Springer, 2019.
9An Introduction to the Mathematical Theory of Inverse Problems, 3rd Edn., Springer, 2021.

10A Qualitative Approach to Inverse Scattering Theory, Springer, 2014.
11Inverse Scattering Theory and Transmission Eigenvalues, 2nd Edn., SIAM, 2022.

12A review on the direct and inverse transmission eigenvalue problem for the spherically symmetric refractive index, Bol. Soc. Mat. Mex.,
2024.
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PROBLEM 1: THE SPHERICALLY SYMMETRIC TEP, ℓ ≥ 0

Consider the ITEP for D = unit ball of R3, in spherical coordinates:

v(r, θ) = αℓjℓ(kr)Pℓ(cos θ), w(r, θ) = βℓ
yℓ(r)

r
Pℓ(cos θ)

▷ I.V.P. for the radial component, ℓ ≥ 0:

y
′′
ℓ (r) +

(
k2n(r) − ℓ(ℓ + 1)

r2

)
yℓ(r) = 0, lim

r→0

(
yℓ(r)

r
− jℓ(kr)

)
= 0

k ∈ C is a transmission eigenvalue iff

Dℓ(k) := det

 yℓ(1) −jℓ(k)

d
dr

(
yℓ(r)

r

)
r=1

−kj′
ℓ(k)

 = 0, ℓ = 0, 1, . . .

∗ Dℓ(k) is the characteristic function of the problem

▷ the above introduce a B.V.P. for each yℓ, with the spectral parameter at the
right end-point

(We will assume that n is not absorbing, i.e. Im(n) = 0.)

9



PROBLEM 1: THE SPHERICALLY SYMMETRIC TEP, ℓ ≥ 0

Consider the ITEP for D = unit ball of R3, in spherical coordinates:

v(r, θ) = αℓjℓ(kr)Pℓ(cos θ), w(r, θ) = βℓ
yℓ(r)

r
Pℓ(cos θ)

▷ I.V.P. for the radial component, ℓ ≥ 0:

y
′′
ℓ (r) +

(
k2n(r) − ℓ(ℓ + 1)

r2

)
yℓ(r) = 0, lim

r→0

(
yℓ(r)

r
− jℓ(kr)

)
= 0

k ∈ C is a transmission eigenvalue iff

Dℓ(k) := det

 yℓ(1) −jℓ(k)

d
dr

(
yℓ(r)

r

)
r=1

−kj′
ℓ(k)

 = 0, ℓ = 0, 1, . . .

∗ Dℓ(k) is the characteristic function of the problem

▷ the above introduce a B.V.P. for each yℓ, with the spectral parameter at the
right end-point

(We will assume that n is not absorbing, i.e. Im(n) = 0.)

9



PROBLEM 1: THE SPHERICALLY SYMMETRIC TEP, ℓ ≥ 0

Consider the ITEP for D = unit ball of R3, in spherical coordinates:

v(r, θ) = αℓjℓ(kr)Pℓ(cos θ), w(r, θ) = βℓ
yℓ(r)

r
Pℓ(cos θ)

▷ I.V.P. for the radial component, ℓ ≥ 0:

y
′′
ℓ (r) +

(
k2n(r) − ℓ(ℓ + 1)

r2

)
yℓ(r) = 0, lim

r→0

(
yℓ(r)

r
− jℓ(kr)

)
= 0

k ∈ C is a transmission eigenvalue iff

Dℓ(k) := det

 yℓ(1) −jℓ(k)

d
dr

(
yℓ(r)

r

)
r=1

−kj′
ℓ(k)

 = 0, ℓ = 0, 1, . . .

∗ Dℓ(k) is the characteristic function of the problem

▷ the above introduce a B.V.P. for each yℓ, with the spectral parameter at the
right end-point

(We will assume that n is not absorbing, i.e. Im(n) = 0.)

9



PROBLEM 1: THE SPHERICALLY SYMMETRIC TEP, ℓ ≥ 0

Consider the ITEP for D = unit ball of R3, in spherical coordinates:

v(r, θ) = αℓjℓ(kr)Pℓ(cos θ), w(r, θ) = βℓ
yℓ(r)

r
Pℓ(cos θ)

▷ I.V.P. for the radial component, ℓ ≥ 0:

y
′′
ℓ (r) +

(
k2n(r) − ℓ(ℓ + 1)

r2

)
yℓ(r) = 0, lim

r→0

(
yℓ(r)

r
− jℓ(kr)

)
= 0

k ∈ C is a transmission eigenvalue iff

Dℓ(k) := det

 yℓ(1) −jℓ(k)

d
dr

(
yℓ(r)

r

)
r=1

−kj′
ℓ(k)

 = 0, ℓ = 0, 1, . . .

∗ Dℓ(k) is the characteristic function of the problem

▷ the above introduce a B.V.P. for each yℓ, with the spectral parameter at the
right end-point

(We will assume that n is not absorbing, i.e. Im(n) = 0.)

9



PROBLEM 1: THE SPHERICALLY SYMMETRIC TEP, ℓ ≥ 0

Consider the ITEP for D = unit ball of R3, in spherical coordinates:

v(r, θ) = αℓjℓ(kr)Pℓ(cos θ), w(r, θ) = βℓ
yℓ(r)

r
Pℓ(cos θ)

▷ I.V.P. for the radial component, ℓ ≥ 0:

y
′′
ℓ (r) +

(
k2n(r) − ℓ(ℓ + 1)

r2

)
yℓ(r) = 0, lim

r→0

(
yℓ(r)

r
− jℓ(kr)

)
= 0

k ∈ C is a transmission eigenvalue iff

Dℓ(k) := det

 yℓ(1) −jℓ(k)

d
dr

(
yℓ(r)

r

)
r=1

−kj′
ℓ(k)

 = 0, ℓ = 0, 1, . . .

∗ Dℓ(k) is the characteristic function of the problem

▷ the above introduce a B.V.P. for each yℓ, with the spectral parameter at the
right end-point

(We will assume that n is not absorbing, i.e. Im(n) = 0.) 9



PROBLEM 2: THE SPHERICALLY SYMMETRIC TEP, ℓ = 0

Consider the ITEP for axially symmetric eigenfunctions, i.e., ℓ = 0:

v0(r) = α0j0(kr), w0(r) = β0
y0(r)

r

▷ I.V.P. for ℓ = 0:

y
′′
0 (r) + k2n(r)y0(r) = 0, y0(0) = 0, y′(0) = 1,

k ∈ C is a special transmission eigenvalue iff

D0(k) := sin k

k
y′(1) − y0(0) cos k = 0

▷ D0(k) is the characteristic function of the problem
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DIRECT PROBLEM

Existence, discreteness and distribution for TE:

� ∗ for sufficiently smooth refractive indices n(r)

� ∗ under restrictions on the size of n ̸≡ 1 and of the quantity
δ :=

∫ 1
0

√
n(t)dt

� ∗ depending on the values of n(1), n′(1) and n′′(1)

11



DIRECT PROBLEM 1: EXISTENCE FOR ℓ ≥ 0

Existence and discreteness for TE: by Colton and Monk 13, Colton and
Päivärinta 14

▷ Application of the Liouville Transformation:

ξ(r) :=
∫ r

0

√
n(t)dt, yℓ(r) = zℓ(ξ)n(r)−1/4,

introduces the Schrödinger equation:

z̈ℓ(ξ) +
(

k2 − ℓ(ℓ + 1)
ξ2 − g(ξ)

)
zℓ(ξ) = 0, 0 < ξ < δ :=

∫ 1

0

√
n(t)dt

where
g(ξ) := ℓ(ℓ + 1)

r2n(r) − ℓ(ℓ + 1)
ξ2 + n′′(r)

4n(r)2 − 5
16

n′(r)2

n(r)3 .

13The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium, Q. J. Mech. Appl. Math., 1988
14Far-field patterns for electromagnetic waves in an inhomogeneous medium, SIAM J. Math. Anal.,1990

12



DIRECT PROBLEM 1: EXISTENCE FOR ℓ ≥ 0

Existence and discreteness for TE: by Colton and Monk 13, Colton and
Päivärinta 14

▷ Application of the Liouville Transformation:

ξ(r) :=
∫ r

0

√
n(t)dt, yℓ(r) = zℓ(ξ)n(r)−1/4,

introduces the Schrödinger equation:

z̈ℓ(ξ) +
(

k2 − ℓ(ℓ + 1)
ξ2 − g(ξ)

)
zℓ(ξ) = 0, 0 < ξ < δ :=

∫ 1

0

√
n(t)dt

where
g(ξ) := ℓ(ℓ + 1)

r2n(r) − ℓ(ℓ + 1)
ξ2 + n′′(r)

4n(r)2 − 5
16

n′(r)2

n(r)3 .

13The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium, Q. J. Mech. Appl. Math., 1988
14Far-field patterns for electromagnetic waves in an inhomogeneous medium, SIAM J. Math. Anal.,1990

12



DIRECT PROBLEM 1: EXISTENCE FOR ℓ ≥ 0

▷ for large values of k and δ ̸= 1:

Dℓ(k) = 1
kn(0)ℓ/2+1/4 sin (k (1 − δ)) + O

( ln k

k2

)

Theorem (Colton - Päivärinta)

Assume that n(x) = n(r) ∈ C2 is spherically stratified. Also,
n(r) = 1 for r ≥ 1, and n(r) > 1 or 0 < n(r) < 1 for 0 ≤ r < 1. Then
there exists an infinite set of transmission eigenvalues.

Theorem (Colton - Monk - Sun 15)

Assume that n(x) = n(r) ∈ C2[0, 1] is spherically stratified. If n(r) ̸≡ 1 then
there exists an infinite set of transmission eigenvalues.

15Analytical and computational methods for transmission eigenvalues, Inv. Probl., 2010.

13



DIRECT PROBLEM 1: EXISTENCE FOR ℓ ≥ 0

▷ for large values of k and δ ̸= 1:

Dℓ(k) = 1
kn(0)ℓ/2+1/4 sin (k (1 − δ)) + O

( ln k

k2

)
Theorem (Colton - Päivärinta)

Assume that n(x) = n(r) ∈ C2 is spherically stratified. Also,
n(r) = 1 for r ≥ 1, and n(r) > 1 or 0 < n(r) < 1 for 0 ≤ r < 1. Then
there exists an infinite set of transmission eigenvalues.

Theorem (Colton - Monk - Sun 15)

Assume that n(x) = n(r) ∈ C2[0, 1] is spherically stratified. If n(r) ̸≡ 1 then
there exists an infinite set of transmission eigenvalues.

15Analytical and computational methods for transmission eigenvalues, Inv. Probl., 2010.

13



DIRECT PROBLEM 1: EXISTENCE FOR ℓ ≥ 0

▷ for large values of k and δ ̸= 1:

Dℓ(k) = 1
kn(0)ℓ/2+1/4 sin (k (1 − δ)) + O

( ln k

k2

)
Theorem (Colton - Päivärinta)

Assume that n(x) = n(r) ∈ C2 is spherically stratified. Also,
n(r) = 1 for r ≥ 1, and n(r) > 1 or 0 < n(r) < 1 for 0 ≤ r < 1. Then
there exists an infinite set of transmission eigenvalues.

Theorem (Colton - Monk - Sun 15)

Assume that n(x) = n(r) ∈ C2[0, 1] is spherically stratified. If n(r) ̸≡ 1 then
there exists an infinite set of transmission eigenvalues.

15Analytical and computational methods for transmission eigenvalues, Inv. Probl., 2010.

13



DIRECT PROBLEM 2: EXISTENCE FOR ℓ = 0

Existence and discreteness for TE: by Colton and Monk 16, Colton, Päivärinta
and Sylvester 17

▷ Application of the Liouville Transformation introduces the Schrödinger
equation:

z̈0(ξ) + (k2 − p(ξ))z0(ξ) = 0, z0(0) = 0, 0 < ξ < δ,(
cos k

n(1)1/4 + n′(1)
4n(1)5/4

sin k

k

)
z0(δ) − n(1)1/4 sin k

k
ż0(δ) = 0,

where
p(ξ) := n′′(r)

4n(r)2 − 5
16

(n′(r))2

n(r)3 .

16The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium, Q. J. Mech. Appl. Math., 1988
17The interior transmission problem, Inv. Prob. Imag., 2007
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DIRECT PROBLEM 2: EXISTENCE FOR ℓ = 0

▷ for large values of k:

D0(k) = 1
k

[(
n(1)
n(0)

)1/4

cos (kδ) sin k − 1
(n(1)n(0))1/4 sin (kδ) cos k

]
+O

( 1
k2

)
.

▷ for large values of k and n(1) = 1, δ ̸= 1:

D0(k) = 1
kn(0)1/4 sin (k (1 − δ)) + O

( 1
k2

)

Theorem (Colton - Päivärinta - Sylvester)

Assume that n ∈ C2[0, 1] and either n(1) ̸= 1 or n(1)=1 and δ ̸= 1. Then
there exists an infinite discrete set of transmission eigenvalues with axially
symmetric eigenfunctions.
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DIRECT PROBLEM 2: COMPLEX EIGENVALUES FOR ℓ = 0

▷ Existence of complex eigenvalues k:

Theorem (Colton - Leung - Meng 18)

Suppose the refractive index n ∈ C2[0, 1] with n(1) = 1, n′(1) = 0 and δ ̸= 1.
Then if n′′(1) ̸= 0, there exist
infinitely many non-real and infinitely many real eigenvalues.

Theorem (Colton - Leung - Meng)

Let the refractive index n ∈ C2[0, 1]. Suppose δ = 1 and n(1) ̸= 1. Then there
are at most finitely many complex transmission eigenvalues. However if both
δ = 1 and n(1) = 1, then it is possible to have only
finitely many real eigenvalues.

18Distribution of complex transmission eigenvalues for spherically stratified media, Inv. Prob., 2015
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DIRECT PROBLEM 2: COMPLEX EIGENVALUES FOR ℓ = 0

▷ Existence of complex eigenvalues k:

Theorem (Colton - Leung19)

Assume that n ∈ C2[0, 1] and either 1 <
√

n(1) < δ or δ <
√

n(1) < 1. Then
there exist infinitely many real and infinitely many complex transmission
eigenvalues.

Theorem (Colton - Leung)

Suppose that n ∈ C2[0, 1] and n(1) = 1, n′(1) = 0, n(r) is non-constant near
r = 1 and δ ̸= 1. Then there exist
infinitely many real and infinitely many complex eigenvalues.

19The existence of complex transmission eigenvalues for spherically stratified media, Appl. Anal., 2017
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DIRECT PROBLEM 2: EIGENVALUES DISTRIBUTION FOR ℓ = 0

▷ Distribution of complex eigenvalues k:

Theorem (Colton - Leung)

Assume that n(1) ̸= 1 and n ∈ C2[0, 1]. Then if complex eigenvalues exist, all
of them lie in a strip parallel to the real axis.

Theorem (Colton - Leung - Meng)

Assume that n ∈ C2[0, 1] with n(1) = 1 and δ ̸= 1. If either n′(1) ̸= 0 or
n′′(1) ̸= 0 , the TE do not lie inside a fixed strip parallel to the real axis.

Theorem (Xu - Xu - Yang20)

Assume that n ∈ C2[0, 1], and δ = 1. If either (i) n(1) ̸= 1, or (ii)
n(1) = 1, n′(1) ̸= 0, or (iii) n(1) = 1, n′(1) = 0, n′′(1) ≠ 0 and∫ 1

0 p(s)ds = 0. If complex TE exist, lie in a strip parallel to the real axis.
However, if n(1) = 1, n′(1) = 0, n′′(1) ̸= 0, and

∫ 1
0 p(s)ds ̸= 0, then infinitely

complex TE exist, and do not lie inside a fixed strip parallel to the real axis.
20Distribution of transmission eigenvalues and inverse spectral analysis with partial information on the refractive index, Math. Meth.
Appl. Sci., 2016
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DIRECT PROBLEM: FURTHER READING

� ∗ Distribution of transmission eigenvalues:
Petkov - Vodev21, Sylvester 22

� ∗ Asymptotic formulas:
McLaughlin - Polyakov23, Xu - Xu -Wang, Xu - Yang -Buterin - Yurko 24,
Wang - Shieh25

� ∗ Absorbing media:
Cakoni - Colton - Haddar 26

21 Localization of the interior transmission eigenvalues for a ball, Inv. Probl. Imag., 2017.
22 Transmission eigenvalues in one dimension, Inv. Probl.,2013.

23On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues, J. Differ. Equ., 1994.
24Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem. Electron, J. Qual. Theory
Differ. Equ, 2019.
25 The inverse interior transmission eigenvalue problem with mixed spectral data, Appl. Math. Comput., 2019.
26The interior transmission eigenvalue problem for absorbing media, Inv. Probl., 2012.
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INVERSE PROBLEM

Uniqueness results for the inverse spectral problem:

� ∗ for sufficiently smooth refractive indices n(r)

� ∗ under restrictions on the size of n ̸≡ 1 and of the quantity
δ :=

∫ 1
0

√
n(t)dt

� ∗ depending on the values of n(1), n′(1) and n′′(1)

20



INVERSE PROBLEM 1: UNIQUENESS FOR ℓ ≥ 0

Inverse Spectral Problem:
Can the knowledge of the spectrum {kj}∞

j=1, (∀ℓ ≥ 0),
uniquely determine n(r)?

Theorem (Cakoni - Colton - Gintides 27)

If n(0) is known, then n(r) is uniquely determined from all TE (∀l ≥ 0), if
n ∈ C2[0, ∞) and n > 1 or 0 < n < 1.

27The interior transmission eigenvalue problem, SIAM J. Math. Anal., 2010
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INVERSE PROBLEM 2: UNIQUENESS FOR ℓ = 0

Inverse Spectral Problem:
Uniquely determine n(r) from the special spectrum {kj}∞

j=1, (for ℓ = 0).

Theorem (McLaughlin - Polyakov 28)

Let n(r) > 0, n ∈ C1(R), n′′ ∈ L2[0, 1], and n(1) = 1, n′(1) = 0.
If δ ≤ 1/3, then n(r) is uniquely determined from an appropriate subsequence
of the spectrum. For δ > 1/3, δ ̸= 1 n is determined in a subinterval.

Theorem (Aktosun - Gintides - Papanicolaou 29)

If δ < 1, then the spherically symmetric TE uniquely determine n(r).

Theorem (Colton - Leung 30)

If n ∈ C2[0, 1], n(0) is known and 0 < n < 1, then the spherically symmetric
TE uniquely determine n(r).
28On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues, J. Differ. Equ., 1994.
29The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation, Inv.
Prob., 2011
30Complex eigenvalues and the inverse spectral problem for transmission eigenvalues, Inv. Probl., 2013
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INVERSE PROBLEM 2: UNIQUENESS FOR ℓ = 0

▷ The δ = 1 case:

Theorem (Aktosun - Gintides - Papanicolaou )

If δ = 1, then the spherically symmetric TE together with the constant
coefficient γ of the D0(k) Hadamard’s factorization uniquely determine n(r).

Theorem (Buterin - Yang - Yurko 31)

If δ = 1, then the spherically symmetric TE without the constant coefficient γ

cannot determine n(r) uniquely.

Theorem (Wei - Xu 32)

If δ = 1, and either (i) n(1) ̸= 1 is known, or (ii) n(1) = 1 and
n ∈ C(m)(1 − α, 1] for some α > 0 and some m ∈ N which satisfies n(j) = 0
for j = 1, . . . , m − 1 and n(m)(1) ̸= 0 is known, then the spherically symmetric
TE uniquely determine n(r).

31On an open question in the inverse transmission eigenvalue problem, Inv. Probl., 2015
32Inverse spectral analysis for the transmission eigenvalue problem, Inv. Probl., 2013.
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INVERSE PROBLEM 2: UNIQUENESS FOR ℓ = 0

▷ The δ > 1 case:

Comments (Aktosun - Gintides - Papanicolaou ) and (Wei - Xu)

If δ > 1, then the spherically symmetric TE cannot determine n(r) uniquely.

Theorem (Xu - Yang -Buterin - Yurko 33)

Assume that n ∈ W m+3
2 [0, 1] for some m ∈ N0 := {0} ∪ N. Also, let

n(1) = 1, n(u)(1) = 0 for u = 1, m + 1 and n(m+2)(1) ̸= 0. If δ > 1 and n(r)
is known in [ϵ, 1] with ϵ satisfying∫ 1

ϵ

√
n(t)dt = A − 1

2 ,

⇒ n(r) is uniquely determined by all zeros of D0(k), including multiplicity.

33Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem. Electron, J. Qual. Theory
Differ. Equ, 2019.
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INVERSE PROBLEM: FURTHER READING

� ∗ Stability of the inverse problem:
Bondarenko - Buterin 34, Buterin - Choque-Rivero - Kuznetsova 35, Xu -
Ma - Yang 36

� ∗ Isospectral sets:
Yang - Buterin 37

� ∗ Absorbing media:
Chen 38

� ∗ Fixed angular-momentum ℓ ≥ 1:
Xu - Yang - Xu 39

� ∗ Modified transmission eigenvalues:
Cogar - Colton - Leung 40, Gintides - Pallikarakis - Stratouras 41

34On a local solvability and stability of the inverse transmission eigenvalue problem, Inv. Probl, 2017.
35On a regularization approach to the inverse transmission eigenvalue problem, Inv. Probl., 2020.
36On the stability of the inverse transmission eigenvalue problem from the data of McLaughlin and Polyakov, J. Differ. Equ., 2022.

37Isospectral sets for transmission eigenvalue problem, J. Inverse Ill-Posed Probl., 2020.
38A uniqueness theorem on the eigenvalues of spherically symmetric interior transmission problem in absorbing medium, Complex Var.
Elliptic Equ., 2015.
39Inverse transmission eigenvalue problem for fixed angular momentum, Inv. Probl. Imag., 2023.
40The inverse spectral problem for transmission eigenvalues, Inv. Probl., 2016.
41Uniqueness of a spherically symmetric refractive index from modified transmission eigenvalues, Inv. Probl., 2022.
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THE DISCONTINUOUS SPHERICALLY SYMMETRIC PROBLEM



SPHERICALLY SYMMETRIC AND DISCONTINUOUS n(r)

▷ Based on results of Gintides - Pallikarakis 42 and Pallikarakis 43

Discontinuous refractive index:

n(r) is C2 in [0, d) and (d, 1], n(r) = 1 for r ≥ 1, n′(1) = 0

0 d r1

1 

n(r)     

- - - - - - - - - - - - - - - - - - - - -
Jump Conditions:
n(d+) = an(d−)
n′(d+) = a−1n′(d−)bn(d−)
a > 0, |a − 1| + |b| > 0,

d ∈ (0, 1)

42The inverse transmission eigenvalue problem for a discontinuous refractive index, Inv. Probl., 2017.
43The inverse spectral problem for the reconstruction of the refractive index from the interior transmission problem, Ph.D. thesis, NTUA,
2017.
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SPHERICALLY SYMMETRIC AND DISCONTINUOUS n(r)

Transformed Problem:

▷ Liouville transf.: z(ξ) := n(r)1/4yℓ(r), ξ(r) :=
∫ r

0

√
n(ρ)dρ

d2z(ξ)
dξ2 +

(
k2 − ℓ(ℓ+1)

ξ2 − g(ξ)
)

z(ξ) = 0, 0 < ξ ̸= d̃

g(ξ) = ℓ(ℓ+1)
r2n(r) − ℓ(ℓ+1)

ξ2 + n
′′

(r)
4n(r)2 − 5n

′
(r)2

16n(r)3

where

0 < ξ < δ :=
∫ 1

0

√
n(t)dt and d̃ :=

∫ d

0

√
n(t)dt, d̃ ∈ (0, A)

▷ z is discontinuous at ξ = d̃, with conditions:

z(d̃+) = ã z(d̃−), dz(d̃+)
dξ

= ã−1 dz(d̃−)
dξ

+ b̃ n(d̃−)

where: |a − 1| + |b| > 0 ⇒ |ã − 1| + |b̃| > 0
ã = a1/4, b̃ = 1

4 n(d−)3/4n(d+)−5/4b + 1
4 n′(d−)n(d−)3/4n(d+)−9/4(1 − a2)
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DIRECT DISCONTINUOUS TEP

Asymptotics of the characteristic functions:

▷ for n(r) ∈ C2[0, ∞) ,

if ℓ = 0, D0(k) = 1
kn(0)1/4 sin k(1 − δ) + O

( 1
k2

)
, k → ∞

if ℓ ≥ 1, Dℓ(k) = 1
kn(0)ℓ/2+1/4 sin k(1 − δ) + O

( ln k

k2

)
, k → ∞

Proposition

▷ for n(r) ∈ C2[0, d) ∪ C2(d, 1]:

D0(k)= 1
kn(0)1/4

[
ã2+1

2ã
sin k(1−δ)+ 1−ã2

2ã
sin k(1−δ+2d̃)

]
+O

(
1

k2

)
Dℓ(k)= 1

kn(0)ℓ/2+1/4

[
ã2+1

2ã
sin k(1−δ)+(−1)ℓ 1−ã2

2ã
sin k(1−δ+2d̃)

]
+O

(
ln k
k2

)
,

⇒ there exists and infinite discrete set of transmission eigenvalues.
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INVERSE DISCONTINUOUS TEP

Uniqueness Results:

Theorem - uniqueness from eigenvalues for ℓ = 0

Constants d̃, ã are uniquely determined by the special (ℓ = 0) transmission
eigenvalues, if |ã − 1| + |b̃| > 0 and:
(1). d̃ ∈ (0, δ), for 0 < δ < 1
(2). d̃ ∈

(
0, δ−1

2

)
or d̃ ∈

(
δ−1

2 , δ − 1
)

∪ (δ − 1, δ) for δ > 1

Theorem - uniqueness from all eigenvalues for ℓ ≥ 0

Assume that n(r) is C2 or p-w C2 and satisfies the jump conditions, where
0 < n < 1 or n > 1. If n(0) is known, then n(r) is uniquely determined by all
transmission eigenvalues.
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SOME INTERESTING OPEN PROBLEMS



SOME INTERESTING OPEN PROBLEMS

� ∗ Direct Problem:

� − Existence and distribution of eigenvalues for less smooth refractive indices, e.g.
n ∈ C.

� − Complex eigenvalues for ℓ ≥ 1.
� − Complex eigenvalues for the discontinuous refractive index.

� ∗ Inverse Problem:
� − Uniqueness for less smooth refractive indices, e.g. n ∈ C.
� − Uniqueness from all ℓ ≥ 0, for refractive index 1 − n changing sign.
� − Uniqueness for absorbing media.

� ∗ Numerical Methods:
� − The direct problem can be solved analytically in specific simple cases (Colton -

Leung - Meng 44) or for constant index (Colton - Monk - Sun 45).
� − Reconstruction schemes for the inverse TEP are considered in:

McLaughlin - Polyakov - Sacks 46, Wang - Zhao - Shieh47.
� A general numerical method for the direct and inverse TEP, using both real and

complex TE is open.

44 Distribution of complex transmission eigenvalues for spherically stratified media, Inv. Probl., 2015.
45Analytical and computational methods for transmission eigenvalues, Inv. Probl., 2010.
46Reconstruction of a spherically symmetric speed of sound, SIAM J. Appl. Math., 1994.
47 Reconstruction for a class of the inverse transmission eigenvalue problem, Math. Meth. Appl. Sci., 2019.
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� − Uniqueness from all ℓ ≥ 0, for refractive index 1 − n changing sign.

� − Uniqueness for absorbing media.
� ∗ Numerical Methods:

� − The direct problem can be solved analytically in specific simple cases (Colton -
Leung - Meng 44) or for constant index (Colton - Monk - Sun 45).

� − Reconstruction schemes for the inverse TEP are considered in:
McLaughlin - Polyakov - Sacks 46, Wang - Zhao - Shieh47.

� A general numerical method for the direct and inverse TEP, using both real and
complex TE is open.

44 Distribution of complex transmission eigenvalues for spherically stratified media, Inv. Probl., 2015.
45Analytical and computational methods for transmission eigenvalues, Inv. Probl., 2010.
46Reconstruction of a spherically symmetric speed of sound, SIAM J. Appl. Math., 1994.
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SOLVING TEP WITH NEUMANN SERIES OF BESSEL FUNCTIONS



NEUMANN SERIES OF BESSEL FUNCTIONS

▷ A numerical method for the direct and inverse TEP using NSBF:
Kravchenko - Murcia-Lozano - Pallikarakis48

∗ Let q ∈ L2(0, L) and L > 0. Consider the Sturm-Liouville equation

−y′′ + q(x)y = ρ2y, 0 < x < L, and ρ ∈ C.

∗ Solutions S (ρ, x) , ϕ(ρ, x) and T (ρ, x) with initial conditions:

S(ρ, 0) = 0, S′(ρ, 0) = 1, T (ρ, L) = 0, T ′(ρ, L) = 1, ϕ(ρ, 0) = 1, ϕ′(ρ, 0) = 0.

satisfying the identity:

T (ρ, x) = ϕ(ρ, L)S(ρ, x) − ϕ(ρ, x)S(ρ, L).

48 Neumann series of Bessel functions in direct and inverse spherically symmetric transmission eigenvalue problems, (working paper).
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NEUMANN SERIES OF BESSEL FUNCTIONS

Theorem (Kravchenko - Navarro - Torba 49, Kravchenko50)
∗ The solutions S (ρ, x) and ϕ(ρ, x) have the representation

S(ρ, x) =
sin(ρx)

ρ
+

1

ρ

∞∑
n=0

sn(x)j2n+1(ρx), ϕ(ρ, x) = cos(ρx) +

∞∑
n=0

gn(x)j2n(ρx),

jn(z) are spherical Bessel functions of order n.

∗ The series converge pointwise with respect to x for x ∈ [0, L], and ∀x ∈ [0, L]
converge uniformly in any strip of the complex plane of the variable ρ, parallel to
the real axis.
∗ The remainders of the partial sums

SN (ρ, x) =
sin(ρx)

ρ
+

1

ρ

N∑
n=0

sn(x)j2n+1(ρx), ϕN (ρ, x) = cos(ρx) +

N∑
n=0

gn(x)j2n(ρx).

satisfy∣
ρS(ρ, x) − ρSN (ρ, x)

∣
≤

ε̃N (x) sinh (Cx)

C
and

∣
ϕ(ρ, x) − ϕN (ρ, x)

∣
≤

ε̃N (x) sinh (Cx)

C
,

∀ρ in |ρ| ≤ C, C > 0, where ε̃N (x) > 0, tending to zero for N → ∞.
∗ the coefficients sn, gn can be calculated from a simple recurrent integration procedure.

49Representation of solutions to the one-dimensional schrödinger equation in terms of neumann series of bessel functions, Appl. Math.
Comput., 2017.
50Direct and inverse Sturm-Liouville problems: A method of solution, Springer, 2020. 35
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SOLVING TEP WITH NSBF

The spherically symmetric TEP (for ℓ = 0) can be written as:

−z̈(ζ) + p(ζ)z(ζ) = k2z(ζ), 0 < ζ < δ,

z(k, δ) = 0, ż(k, δ) = −n−1/4(0),

D0(k) =
(

cos k

n1/4(1)
+ n′(1) sin k

4n5/4(1) k

)
z(k, 0) + n1/4(1) sin k

k
ż(k, 0).

Proposition

The characteristic function D0(k) is equivalent to

D0(k) = a(k)ϕ(k, δ) + b(k)S(k, δ), k ∈ C,

where ϕ(k, ζ) and S(k, ζ) are fundamental solutions of the Sturm-Liouville
equation and

a(k) := n1/4(1) sin k

k
, b(k) := −

(
cos k

n1/4(1)
+ n′(1) sin k

4n5/4(1) k

)
.

Approximate the characteristic function by

D0,N (k) = a(k)cos(kδ) + a(k)

N∑
n=0

gn(δ)j2n(kδ) + b(k)
sin(kδ)

k
+

b(k)

k

N∑
n=0

sn(δ)j2n+1(kδ).
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EXAMPLE

Refractive Index:
n(r) = 16

(r+1)2(3−r)2 .
The corresponding potential
under the Liouville transform
is p(ζ(r)) = 1/4, and ζ ∈
[0, log(3)].

Direct Problem: Real and complex transmission eigenvalues.

Inverse Problem: Reconstructions of the refractive index. Inverse Problem: Abs error of the reconstructions.
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