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The sine-Gordon equation on

graphs



The sine-Gordon equation

sine-Gordon equation in one dimension (laboratory coordinates):

utt −uxx + sinu = 0, x ∈ R, t > 0.

Applications:

• Surfaces with negative Gaussian curvature (Eisenhart, 1909)

• Propagation of crystal dislocations (Frenkel and Kontorova, 1939)

• Elementary particles (Perring and Skyrme, 1962)

• Propagation of magnetic flux on a Josephson line (Scott, 1969)

• Dynamics of fermions in the Thirring model (Coleman, 1975)

• Oscillations of a rigid pendulum attached to a stretched rubber band

(Drazin, 1983)
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Superconductivity and quantum-tunneling

Josephson won the 1973 Nobel Prize in Physics for his discovery of the

Josephson effect, describing the emergence of a supercurrent through a

Josephson junction. The phase difference of wave functions of electrons

in the super-conductors satisfy the sine-Gordon equation.

Figure 1: Two dimensional Josephson junction: infinite plates of superconductors

separated by a thin dielectric barrier (image credit: AIST-NT, California, USA.)
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PDEs on graphs

• Metric graph is a network-shaped structure of edges Ej which are

assigned a metric (length).

• Edges are connected at vertices according to boundary conditions

which determine the dynamics on the network.

• One can pose a system on PDEs on each edge. Graphs are not

manifolds, though, so the coupling is given exclusively through the

boundary conditions at the vertices, known as the the “topology of

the graph”.

• Many models are posed on branched domains that resemble a thin

neighborhood of a graph, such as Josephson junction networks

(Nakajima et al. 1976, 1978), electric circuits (Backhaus, Cherktov,

2013), unidirectional shallow water flow in a network (Bona,

Cascaval, 2008), or nerve impulses in complex arrays of neurons

(Scott, 2003).
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Josephson tricrystal junctions

• The sine-Gordon equation was first conceived on a Y -shaped

Josephson junction by Nakajima et al. (1976, 1978) as a prototype

for logic circuits.

• A Y junction consists of three long (semi-infinite) Josephson

junctions coupled at one single common vertex, a structure known

as a tricrystal junction.

• A Y -junction of the first type (or type I) consists of one incoming

(or parent) edge, E1 = (−∞,0), meeting at one single vertex at the

origin, ν = 0, with other two outgoing (children) edges, Ej = (0,∞),

j = 2,3.
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Figure 2: Y -junction of the first type with E1 = (−∞,0) and Ej = (0,∞), j = 2,3.
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sine-Gordon model on a Y -graph

The sine-Gordon model on a Y -graph of type I reads

∂
2
t uj − c2

j ∂
2
x uj + sinuj = 0, x ∈ Ej , t > 0, 1 5 j 5 3, (SGg)

endowed with boundary conditions of either δ -type,

u1(0−) = u2(0+) = u3(0+),

−c2
1u
′
1(0−) +

3

∑
j=2

c2
j u
′
j (0+) = Zu1(0−),

(δ )

or of δ ′-type,

c1u
′
1(0−) = c2u

′
2(0+) = c3u

′
3(0+),

−c1u1(0−) +
3

∑
j=2

cjuj (0+) = λc1u
′
1(0−).

(δ ′)
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Interpretation

• λ ,Z ∈ R are given physical parameters. Measure the intensity of the

interaction at the vertex.

• BCs of δ -type refers to continuity of the wave functions and a

balance flux relation for the derivatives of the wave functions at the

vertex.

• BCs of δ ′-type imply continuity of the fluxes (surface current density

is the same in all three thin films at the intersection) and a

Kirchhoff-type rule for the self-induced magnetic flux.

• When Z = 0 we recover Kirchhoff’s rule (Nakajima et al. 1978)

−c2
1 ∂xu1(0−) +

3

∑
j=2

c2
j ∂xuj (0+) = 0,

equivalent to charge conservation at the vertex.
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• When λ = 0 we obtain a Kirchhoff-type rule for the self-induced

magnetic flux (Nakajima et al. 1976)

−c1u1(0−) +
3

∑
j=2

cjuj (0+) = 0

• Both sets of boundary conditions correspond to all the self-adjoint

extensions of the formal operator

Fu =

{(
− c2

j
d2

dx2

)
uj

}3

j=1

, u = (uj )
3
j=1,

on a star graph Y (for all values of λ and Z ).
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Stationary profiles

Equations (SGg) can be recast as a first order system,{
∂tuj = vj

∂tvj = c2
j ∂ 2

x uj − sinuj ,
x ∈ Ej , t > 0, 1 5 j 5 3. (SGg’)

We are interested on the flow of (SGg’) around solutions of stationary

type,

uj (x , t) = φj (x), vj (x , t) = 0,

j = 1,2,3, x ∈ Ej , t > 0, where

−c2
j φ
′′
j + sinφj = 0,

and the boundary conditions (δ ) or (δ ′) at the vertex ν = 0.
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Preliminaries



Notations

• A closed, densely defined, symmetric operator in a Hilbert space H.

• The domain of A is denoted by D(A).

• The deficiency indices of A are denoted by n±(A) := dimker(A∗∓ iI )

where A∗ is the adjoint operator.

• The number of negative eigenvalues counting multiplicities (Morse

index) of A is denoted by n(A).

• For −∞≤ a< b ≤ ∞, L2(a,b) is Hilbert space equipped with the

inner product

(u,v) =
∫ b

a
u(x)v(x)dx .
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• Hm(a,b) we denote the classical Sobolev spaces on (a,b)⊆ R with

the usual norm.

• Y the junction graph parametrized by the edges E1 = (−∞,0),

Ej = (0,∞), j = 2,3, attached to a common vertex ν = 0.

• Sobolev and Lebesgue spaces on Y are defined as

Hm(Y ) =⊕3
j=1H

m(Ej ) = Hm(−∞,0)⊕Hm(0,∞)⊕Hm(0,∞),

Lp(Y ) =⊕3
j=1L

p(Ej ) = Lp(−∞,0)⊕Lp(0,∞)⊕Lp(0,∞),
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Classical results on extension theory of symmetric operators (i)

Theorem (von Neumann decomposition)

Let A be a closed, symmetric operator, then

D(A∗) = D(A)⊕N−i ⊕N+i .

with N±i = ker(A∗∓ iI ). Therefore, for u ∈ D(A∗) and

u = x + y + z ∈ D(A)⊕N−i ⊕N+i ,

A∗u = Ax + (−i)y + iz .

Ref: Reed and Simon, vol.II, p. 138.
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Classical results on extension theory of symmetric operators (ii)

Proposition 1

Let A be a densely defined, lower semi-bounded symmetric operator (that

is, A≥mI ) with finite deficiency indices, n±(A) = k < ∞, in the Hilbert

space H . Let Â be a self-adjoint extension of A. Then the spectrum of

Â in (−∞,m) is discrete and consists of, at most, k eigenvalues counting

multiplicities.

Ref.: Reed and Simon, vol.II, chapter X.
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Classical results on extension theory of symmetric operators

(iii)

Proposition 2

Let A be a densely defined, closed, symmetric operator in some Hilbert

space H with deficiency indices equal n±(A) = 1. All self-adjoint

extensions Aθ of A may be parametrized by a real parameter θ ∈ [0,2π)

where

D(Aθ ) = {x + cφ+ + ζe iθ φ− : x ∈ D(A),ζ ∈ C},
Aθ (x + ζ φ+ + ζe iθ φ−) = Ax + iζ φ+− iζe iθ φ−,

with A∗φ± =±iφ±, and ‖φ+‖= ‖φ−‖.

Ref.: Reed and Simon, vol.II, chapter X.
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Classical results on extension theory of symmetric operators

(iv)

Proposition 3

All self-adjoint extensions of a closed, symmetric operator which has

equal and finite deficiency indices have one and the same continuous

spectrum.

Ref: Naimark, vol.II, p. 38.
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Useful extension result

Proposition 4

Consider the closed symmetric operator, (M ,D(M )), densely defined on

L2(Y ) by

M =
((
− c2

j
d2

dx2

)
δj ,k

)
, 1 5 j ,k 5 3,

D(M ) =
{

(vj )
3
j=1 ∈ H2(Y ) : v1(0−) = v2(0+) = v3(0+) = 0,

3

∑
j=2

c2
j v
′
j (0+)− c2

1v
′
1(0−) = 0

}
,

with δj ,k being the Kronecker symbol. Then the deficiency indices are

n±(M ) = 1. Moreover, we have that all the self-adjoint extensions of

(M ,D(M )), namely, (JZ ,D(JZ )), Z ∈ R, are defined by JZ ≡M

and D(JZ ) by

D(LZ ) =
{

v = (vj )
3
j=1 ∈ H2(Y ) : v1(0−) = v2(0+) = v3(0+),

3

∑
j=2

c2
j v
′
j (0+)− c2

1v
′
1(0−) = Zv1(0−)

}
,

See Angulo Pava, P, J. Nonlinear Sci. (2021)
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Instability theory with

δ -interaction



Energy spaces

The energy space associated to (SGg’) with δ -interaction is

E (Y ) := {(vj )3
j=1 ∈ H1(Y ) : v1(0−) = v2(0+) = v3(0+)}.

First we verify that the Cauchy problem associated to (SGg’) is

well-posed in the energy space E (Y )×L2(Y ).
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Local well-posedness (i)

Theorem (local well-posedness with δ -interaction)

For any Ψ ∈ E (Y )×L2(Y ) there exists T > 0 such that the sine-Gordon

equation (SGg’) has a unique solution w ∈ C ([0,T ];E (Y )×L2(Y ))

satisfying w(0) = Ψ. For each T0 ∈ (0,T ) the mapping

Ψ ∈ E (Y )×L2(Y )→w ∈ C ([0,T0];E (Y )×L2(Y )),

is at least of class C 2. Moreover, for all t ∈ (0,T ], w(t) ∈ E (Y )×C (Y ),

where C (Y ) = {(vj )3
j=1 ∈ L2(Y ) : v1(0−) = v2(0+) = v3(0+)}.
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Local well-posedness (ii)

Proof sketch: Not so tough, but delicate. Need explicit resolvent

estimates and to apply Lumer-Phillips to obtain the semigroup.

1. Recast system in vector form

wt = JEw +F (w)

where w = (u,v)>, u = (u1,u2,u3), v = (v1,v2,v3), u1,v1 : (−∞,0)→ R,

uj ,vj : (0,+∞)→ R, j = 2,3,

J =

(
0 I3
−I3 0

)
, E =

(
F 0

0 I3

)
, F (w) =



0

0

0

−sin(u1)

−sin(u2)

−sin(u3)


where I3 = identity matrix and F is diagonal-matrix linear operator

F =
((
− c2

j
d2

dx2

)
δj ,k

)
, 1 5 j ,k 5 3.
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Local well-posedness (ii)

2. Consider the operator FZ ≡F defined on the δ -interaction domain

D(FZ ) =
{

(vj )
3
j=1 ∈ H2(Y ) : v1(0−) = v2(0+) = v3(0+),

3

∑
j=2

c2
j v
′
j (0+)− c2

1v
′
1(0−) = Zv1(0−)

}
.

3. Perform the spectral analysis of (FZ ,D(FZ )): For all Z ∈ R,

σess(FZ ) = σac(FZ ) = [0,∞). If Z < 0, FZ has precisely one negative,

simple eigenvalue,

σpt(FZ ) =
{
− Z2

(∑
3
j=1 cj )

2

}
,

with eigenfunction ΦZ = (eαx ,e−αx ,e−αx ), α =−Z/∑
3
j=1 cj > 0. If

Z = 0, FZ has no eigenvalues, σpt(FZ ) = ∅.
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Local well-posedness (iii)

4. Explicit characterization of the resolvent of the operator A = JE . Let

Z ∈ R. For λ ∈ C with −λ 2 ∈ ρ(FZ ), we have that λ ∈ ρ(A) with

D(A ) = D(FZ )×L2(Y ) and

R(λ : A ) = (λ I −A )−1 : H1(Y )×L2(Y )→ D(A )

has the representation for Ψ = (u,v)

R(λ : A )Ψ =

(
−R(−λ 2 : FZ )(λu + v)

−λR(−λ 2 : FZ )(λu + v)−u

)
,

where R(−λ 2 : FZ ) = (−λ 2I3−FZ )−1 : L2(Y )→ D(FZ ).
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Local well-posedness (iv)

5. Apply Lumer-Phillips theorem to conclude the existence of a

C0-semigroup: A ≡ JE with D(A ) = D(FZ )×E (Y ) is the infinitesimal

generator of a C0-semigroup {W (t)}t=0 on H1(Y )×L2(Y ). For any

Ψ ∈ H1(Y )×L2(Y ) and θ > β + 1, β = Z2

(∑
3
j=1 cj )

2 , we have the

representation formula

W (t)Ψ =
1

2π i

∫
θ+i∞

θ−i∞
eλ tR(λ : A )Ψdλ

where λ ∈ ρ(A ) with Re λ = θ and R(λ : A ) = (λ I −A )−1, and for

every δ > 0, the integral converges uniformly in t for every t ∈ [δ ,1/δ ].

6. The local existence result follows from standard arguments (Banach

fixed point theorem). Since the nonlinear term F (z) is smooth, then the

Implicit Function Theorem implies the smoothness property of the

mapping data-solution.
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Static solutions of kink type

For a given physical parameter Z ∈ R and the graph

Y = (−∞,0)∪ (0,∞)∪ (0,∞). W.l.o.g. assume cj > 0. Define static

solutions of the form Φ = (φj )
3
j=1 ∈ H2(Y ), which are of kink type

φ1(x) = 4arctan
(
e

1
c1

(x−a1)
)
, x < 0,

φi (x) = 4arctan
(
e
− 1

ci
(x−ai )

)
, x > 0, i = 2,3.

(K-K)

Φ is subject to the boundary conditions (δ ).
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This yields the conditions:

1

c1
a1 =− 1

c2
a2 =− 1

c3
a3

− e
− a1

c1

1 + e
− 2a1

c1

3

∑
j=1

cj = Z arctan
(
e
− a1

c1

)
.

for Z ∈ R.

These conditions imply that, necessarily, Z ∈ (−∑
3
j=1 cj ,0). (Take a look

at f (y) = 1+y2

y arctan(y) for y = 0.)
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(a) for Z ∈ (−∑
3
j=1 cj ,− 2

π ∑
3
j=1 cj ) we obtain a1 > 0, a2,a3 < 0, φ ′′i > 0

for every i , and φ ′1 > 0, φ ′j < 0 (j = 1,2). Thus, the profile is of

tail-type. Moreover, φi ∈ (0,π), i = 1,2,3.

(b) the case Z =− 2
π ∑

3
j=1 cj implies a1 = 0 = a2 = a3; therefore,

φi (0) = π and φ ′′i (0) = 0, i = 1,2,3. In this case, we have a

“smooth” profile around the vertex ν = 0.

(c) if Z ∈ (− 2
π ∑

3
j=1 cj ,0) we get a1 < 0; therefore a2,a3 > 0, and

φ ′′i (ai ) = 0, i = 1,2,3. We also have φ ′1 > 0, φ ′i < 0 (i = 1,2). Thus,

the profile is of bump-type. Moreover, φi ∈ (0,η0), i = 1,2,3,

η0 = 4arctan
(
e
− 1

c1
a1
)
> π.
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Figure 3: (a) “Tail” configuration for Z ∈ (−∑
3
j=1 cj ,− 2

π ∑
3
j=1 cj ).
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Figure 4: (b) “Smooth” profile solutions when Z =− 2
π ∑

3
j=1 cj .
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Figure 5: (c) Profiles of “bump” type for Z ∈ (− 2
π ∑

3
j=1 cj ,0).
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Linearized problem around Φ

Rewrite system (SGg’) as

wt = JEw +F (w)

where w = (u,v)>, with u = (u1,u2,u3), v = (v1,v2,v3),

u1,v1 : (−∞,0)→ R, uj ,vj : (0,+∞)→ R, j = 2,3,

J =

(
0 I3
−I3 0

)
, E =

(
F 0

0 I3

)
, F (w) =



0

0

0

−sin(u1)

−sin(u2)

−sin(u3)


where F the diagonal-matrix linear operator

F =
((
− c2

j
d2

dx2

)
δj ,k

)
, 1 5 j ,k 5 3.
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Here we will consider the operator FZ ≡F defined on the δ -interaction

domain

D(FZ ) =
{

v ∈ H2(Y ) : v1(0−) = v2(0+) = v3(0+),
3

∑
j=2

c2
j v
′
j (0+)− c2

1v
′
1(0−) = Zv1(0−)

}
,

Define the perturbation,

v ≡w−Φ.

and linearize around Φ,

vt = JE v,

where E being the 6×6 diagonal-matrix E =

(
L 0

0 I3

)
, and

L =
((
− c2

j
d2

dx2
+ cos(φj )

)
δj ,k

)
, 1 5 j ,k 5 3. (**)

Here D(L )≡ D(FZ ) and hence D(JE ) = D(E ) = D(FZ )×L2(Y ).

Note that Φ ∈ D(FZ ).
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Spectral instability

For instability analysis we find a growing mode solution v = eµtΨ and

Re µ > 0. Thus,

JE Ψ = µΨ,

with Ψ ∈ D(JE ).

Definition

The stationary vector solution (Φ,0) ∈ D(E ) is said to be spectrally

stable for model sine-Gordon if the spectrum of JE satisfies σ(JE )⊂ iR.
Otherwise, the stationary solution is said to be spectrally unstable.
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Observations

• It is standard to show that σpt(JE ) is symmetric with respect to

both the real and imaginary axes and σess(JE )⊂ iR by supposing J

skew-symmetric and E self-adjoint.

• Hence it is equivalent to say that Φ ∈ D(JE ) is spectrally stable if

σpt(JE )⊂ iR, and it is spectrally unstable if σpt(JE ) contains point

λ with Re λ > 0.

• The eigenvalue problem to solve is now reduced to,

JE Ψ = λ Ψ, Re λ > 0, Ψ ∈ D(E ). (EvP)
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Linear instability criterion for the sine-Gordon model on a Y -

junction

Assumptions:

(S1) JE is the generator of a C0-semigroup {S(t)}t=0.

(S2) Let L be the matrix-operator in (**), defined on a domain

D(L )⊂ L2(Y ) on which L is self-adjoint.

(S3) Suppose L : D(L )→ L2(Y ) is invertible with Morse index

n(L ) = 1 and such that σ(L ) = {λ0}∪J0 with J0 ⊂ [r0,∞), for

r0 > 0, and λ0 < 0,

Theorem

Suppose assumptions (S1) - (S3) hold. Then the operator JE has a real

positive and a real negative eigenvalue.

35



Linear instability criterion for the sine-Gordon model on a Y -

junction

Assumptions:

(S1) JE is the generator of a C0-semigroup {S(t)}t=0.

(S2) Let L be the matrix-operator in (**), defined on a domain

D(L )⊂ L2(Y ) on which L is self-adjoint.

(S3) Suppose L : D(L )→ L2(Y ) is invertible with Morse index

n(L ) = 1 and such that σ(L ) = {λ0}∪J0 with J0 ⊂ [r0,∞), for

r0 > 0, and λ0 < 0,

Theorem

Suppose assumptions (S1) - (S3) hold. Then the operator JE has a real

positive and a real negative eigenvalue.

35



Proof sketch: The proof of the criterion is based on the work by Lopes

(2002) and from the following result on closed convex cones by

Krasnoselskĭı (1964) (chapter 2, section 2.2.6):

Theorem

Let K be a closed convex cone of a Hilbert space (X ,‖ · ‖) such that

there are a continuous linear functional Π and a constant a> 0 such that

Π(u) = a‖u‖ for any u ∈ K . If T : X → X is a bounded linear operator

that leaves K invariant, then T has an eigenvector in K associated to a

nonnegative eigenvalue.

Apply the theorem to the non-empty closed convex cone

K0 = {z ∈ D(E ) : 〈E z ,z〉5 0, and 〈z ,Ψ0〉= 0}.

Then you show that the eigenvalue must be ζ 6= 0. By symmetry, both

−ζ and ζ are eigenvalues.
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Main instability result

Theorem

Let Z ∈ (−∑
3
j=1 cj ,0). Then the smooth family of stationary profiles of

kink type Z 7→ ΦZ defined above is spectrally unstable for the

sine-Gordon model (SGg’).
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Proof sketch (i)

The proof goes on a case-by-case basis and calculation of the Morse

index (the number of negative eigenvalues counting multiplicities).

Lemma 1

Let Z ∈ (−∑
3
j=1 cj ,0). Then ker(LZ ) = {0}.

Proof sketch: Follows from Sturm-Liouville theory on half-lines. Let

u = (u1,u2,u3) ∈ D(LZ ) and LZu = 0. Since −c2
j

d2

dx2 φ ′j + cos(φj )φ ′j = 0,

j = 1,2,3, we obtain

u1(x) = α1φ ′1(x), x < 0, uj (x) = αjφ
′
j (x), x > 0, j = 2,3,

with αj ∈ R. Since φ ′j (0+) =−φ ′1(0−) c1
cj

, j = 2,3, we get from the

conditions of D(LZ )

α1 =−α2
c1
c2

=−α3
c1
c3
,

3

∑
j=2

αjc
2
j φ ′′j (0+)−α1c

2
1 φ ′′1 (0−) = Zα1φ ′1(0−).
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Proof sketch (ii)

Cases:

1) Let Z =− 2
π ∑

3
j=1 cj . Then, from φ ′′j (0) = 0 for all j we obtain

α1φ ′1(0−) = 0. Since φ ′1(0−) 6= 0 we have α1 = 0 and so

α2 = α3 = 0. Hence u = 0.

2) Let Z ∈ (− 2
π ∑

3
j=1 cj ,0). From continuity we have

−c2
j φ ′′j (0+) =−sin(φj (0+)) =−sin(φ1(0−)) =−c2

1 φ ′′1 (0−).

Then

−α1c1φ ′′1 (0−)∑
3
j=1 cj = Zα1φ ′1(0−).

Suppose α1 6= 0. Then, since φ ′′1 (0−) < 0 and φ ′1(0−) > 0 we obtain

a contradiction. Hence, α1 = α2 = α3 = 0.
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Proof sketch (iii)

3) Let Z ∈ (−∑
3
j=1 cj ,− 2

π ∑
3
j=1 cj ). Suppose α1 6= 0. Then, since

φ ′′1 (0) = 4 e
− a1
c1 −e−

3a1
c1

[1+e
− 2a1

c1 ]2c2
1

, φ ′1(0) = 4e
− a1
c1

[1+e
− 2a1

c1 ]c1

,

we obtain

(1−y2)arctany = y , y = e
− a1

c1 .

Since a1 > 0 we obtain y ∈ (0,1) and so the function

h(x) = (1−x2)arctanx −x has a zero for x ∈ (0,1). Since

h(0) = 0,h(1) =−1 and h′(x) < 0 on (0,1), we obtain a

contradiction. Hence, α1 = α2 = α3 = 0.
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Proof sketch (iv)

Lemma 2

Let Z ∈
(
−∑

3
j=1 cj ,− 2

π ∑
3
j=1 cj

]
. Then n(LZ ) = 1.

Proof sketch. Follows from extension theory for symmetric operators.

From Proposition 4 the family (LZ ,D(LZ )) represents all the

self-adjoint extensions of the closed symmetric operator (M0,D(M0))

where

M0 =
((
− c2

j
d2

dx2
+ cos(φj )

)
δj ,k

)
, 1 5 j ,k 5 3,

D(M0) =
{

(vj )
3
j=1 ∈ H2(G ) : v1(0−) = v2(0+) = v3(0+) = 0,

3

∑
j=2

c2
j v
′
j (0+)− c2

1v
′
1(0−) = 0

}
,

where n±(M0) = 1. It can be shown that M0 = 0. Let

Lj =−c2
j

d2

dx2 + cos(φj ), therefore

Ljψ =− 1
φ ′j

d
dx

[
c2
j (φ ′j )

2 d
dx

(
ψ

φ ′j

)]
.

Note that φ ′j 6= 0.
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Proof sketch (v)

For Ψ = (ψj ) ∈ D(M0) we get

〈M0Ψ,Ψ〉=
∫ 0

−∞

c2
1 (φ

′
1)2
∣∣∣ d
dx

(
ψ1

φ ′1

)∣∣∣2dx +
3

∑
j=2

∫ +∞

0
c2
j (φ

′
j )

2
∣∣∣ d
dx

(
ψj

φ ′j

)∣∣∣2dx
− c2

1 ψ1(0)
[

ψ ′1(0)φ ′1(0)−ψ1(0)φ ′′1 (0)

φ ′1(0)

]
+

3

∑
j=2

c2
j ψj (0)

[ψ ′j (0)φ ′j (0)−ψj (0)φ ′′j (0)

φ ′j (0)

]
The integral terms are non-negative and equal zero if and only if Ψ≡ 0.

Due to the conditions ψ1(0−) = ψ2(0+) = ψ3(0+) = 0 the non-integral

term vanishes and we get M0 = 0.

Due to Proposition 1 we have all the self-adjoint extensions LZ of M0

satisfies n(LZ ) 5 1. Next, for Φ = (φ1,φ2,φ3) ∈ D(LZ ), it follows from

the relations Ljφj =−sin(φj ) + cos(φj )φj that

〈LZΦ,Φ〉=
∫ 0
−∞

[−sin(φ1) + cos(φ1)φ1]φ1dx + ∑
3
j=2

∫+∞

0 [−sin(φj ) + cos(φj )φj ]φjdx < 0,

because of 0 < φj (x) 5 π for every Z ∈
(
−∑

3
j=1 cj ,− 2

π ∑
3
j=1 cj

]
and

θ cosθ 5 sinθ for all θ ∈ [0,π]. Then from minimax principle we arrive at

n(LZ ) = 1. This finishes the proof.
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Proof sketch (vi)

Lemma 3

Let Z ∈
(
− 2

π ∑
3
j=1 cj ,0

)
. Then n(LZ ) = 1.

Proof sketch. Follows from analytic perturbation theory. From Lemma

1, for Z ∗ :=− 2
π ∑

3
j=1 cj there holds n(LZ∗) = 1. Now, from the relation

between Z and the c ′j s we have the continuous mapping function

Z ∈
(
−∑

3
j=1 cj ,0

)
→ a1(Z ) such that

a1(Z ) =


< 0, for Z ∗ < Z < 0,

= 0, for Z = Z ∗,

> 0, for −
3

∑
j=1

cj < Z < Z ∗.
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Proof sketch (vii)

• First, it can be proved that LZ converges to LZ∗ as Z → Z ∗ in the

generalized sense.

• Then, it can be shown that n(LZ ) = 1 for Z ∈ [Z ∗−δ1,Z
∗+ δ1] for

0 < δ1� 1 sufficiently small.

• Finally, use a classical continuation argument based on the

Riesz-projector to show that n(LZ ) = 1 for all Z ∈ (Z ∗,0). Define

ω = sup{η : η ∈ (Z ∗,0) such that n(LZ ) = 1 for all Z ∈ (Z ∗,η)} .

It can be proved (using Riesz projectors) that ω = 0.

Upon application of Lemmata 1, 2 and 3, as well as the linear instability

criterion, we obtain the result.
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Static solutions of kink/anti-kink type

For simplicity assume cj ≡ 1 and define kink/anti-kink solutions,

φ1(x) = 4arctan
(
e−(x−a1)

)
, x < 0, lim

x→−∞
φ1(x) = 2π

φi (x) = 4arctan
(
e−(x−ai )

)
, x > 0, lim

x→+∞
φi (x) = 0, i = 2,3,

(K-aK)

subject to the boundary conditions (δ ).

By a similar analysis we end up with Z ∈ (−1,0).

Notice however, that the kink/anti-kink stationary profiles (K-aK) do not

belong to the energy space H2(Y ).
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(a) for Z ∈ (−1,− 2
π

) we obtain a1 < 0, φ ′′i > 0, i = 2,3, and φ ′′1 (a1) = 0.

Thus, the profile looks like two left-translated anti-kinks on all the

line. Moreover, φi (0) ∈ (η ,π), i = 1,2,3, η > 0,

(b) the case Z =− 2
π

implies a1 = a2 = a3 = 0; therefore, φi (0) = π and

φ ′′i (0) = 0, i = 1,2,3. In this case, we have two-classical anti-kink

profile around the vertex ν = 0

(c) for Z ∈ (− 2
π
,0) we obtain a1 > 0, φ ′′i (a1) = 0, i = 2,3. The profile

looks like two right-translated anti-kinks on all the line. Moreover,

φi (0) ∈ (π,2π), i = 1,2,3,
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Figure 6: (a) Profile solutions of anti-kink/kink type when Z ∈ (−1,−2/π), cj ≡ 1

(left-translated anti-kink configuration).
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Figure 7: (b) Solution of anti-kink/kink type when Z =−2/π, cj ≡ 1.
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Figure 8: (c) Solution of anti-kink/kink type when Z ∈ (−2/π,0), cj ≡ 1

(right-translated anti-kink).
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Main instability result

Using the same techniques one can prove:

Theorem

Let Z ∈ (−1,0), ci ≡ 1. Then the smooth family of stationary profiles of

kink/anti-kink type Z 7→ ΦZ defined above is spectrally unstable for the

sine-Gordon model (SGg’).
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Instability theory with

δ ′-interaction



Local well-posedness

The energy space associated to (SGg’) with δ ′-interaction is simply

H1(Y )×L2(Y ). Similar arguments lead to

Theorem (local well-posedness with δ ′-interaction)

For any Ψ ∈ H1(Y )×L2(Y ) there exists T > 0 such that the

sine-Gordon equation (SGg’) has a unique solution

w ∈ C ([0,T ];H1(Y )×L2(Y )) satisfying w(0) = Ψ. For each T0 ∈ (0,T )

the mapping data-solution

Ψ ∈ H1(Y )×L2(Y )→w ∈ C ([0,T0];H1(Y )×L2(Y )),

is at least of class C 2.
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Stationary solutions of kink type

Once again we propose the family Ψλ ,δ ′ = {φi}3
i=1 where{

φ1(x) = 4arctan
(
e(x−a1)/c1

)
, x ∈ (−∞,0),

φj (x) = 4arctan
(
e−(x−aj )/cj

)
, x ∈ (0,∞), j = 2,3.

(K-K’)

Similar considerations over the boundary conditions (δ ′) imply

λ ∈
(
−∞,−∑

3
j=1 cj

)
.
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(a) for λ ∈ (−∞,−π

2 ∑
3
j=1 cj ) we obtain a2 > 0, a3 > 0, a1 < 0, φ ′i < 0

and φ ′′i (ai ) = 0, for i = 1,2,3. Moreover, φi ∈ (0,η), i = 2,3,

−φ1 ∈ (−η ,0), with η = 4arctan
(
ea2/c2

)
> π. Thus, the profile is of

bump-type.

(b) the case λ =−π

2 ∑
3
j=1 cj implies a1 = a2 = a3 = 0,

φ1(0) = φ2(0) = φ3(0) = π. Moreover, φ ′′i (0) = 0, i = 1,2,3.

(c) for λ ∈ (−π

2 ∑
3
j=1 cj ,−∑

3
j=1 cj ) we obtain a2 < 0, a3 < 0, a1 > 0,

φ ′i < 0 and φ ′′i > 0 for i = 2,3, φ ′1 > 0 and φ ′′1 > 0. φj ∈ (0,π) for

every j . Thus, the profile is of tail-type.
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Figure 9: (a) “Bump-type” configuration for λ ∈ (−∞,− π

2 ∑
3
j=1 cj ).
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Figure 10: (b) Profile solution when λ =− π

2 ∑
3
j=1 cj .
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Figure 11: (c) “Tail-type” configuration for λ ∈ (− π

2 ∑
3
j=1 cj ,−∑

3
j=1 cj ).
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Spectral instability result

Similar spectral techniques can be applied to obtain

Theorem

Let λ ∈ (−∞,−∑
3
j=1 cj ), cj > 0. Then the smooth family of stationary

profiles of kink type, λ 7→Ψλ ,δ ′ determined above is spectrally unastable

in the following cases:

(i) for λ ∈ (−π

2 ∑
3
j=1 cj ,−∑

3
j=1 cj ) and the constants ai and ci satisfying

a3 =
c3

c2
a2, a1 =−c1

c2
a2, ci > 0,

(ii) for λ ∈ (−∞,−π

2 ∑
3
j=1 cj ] with same conditions as in (i) plus

c1 = c2 = c3.
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Same story for profiles of kink/anti-kink type Πλ ,δ ′ . For simplicity

c1 = c2 = c3 = 1 and

(a) for a1 < 0, λ ∈ (−∞,−π

2 ).

(b) for a1 = 0, λ =−π

2 .

(c) for a1 > 0, λ ∈ (−π

2 ,+∞).
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Figure 12: Solution of anti-kink/kink type when λ ∈ (−∞,− π

2 ), cj ≡ 1 (“bump-type”

configuration).
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Figure 13: Solution of anti-kink/kink type when λ =− π

2 , cj ≡ 1.
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Figure 14: Solution of anti-kink/kink type when λ ∈ (− π

2 ,∞), cj ≡ 1 (“tail-type”

configuration).

61



Partial instability result

The spectral study yields

Theorem

Let λ ∈ (−π

2 ,∞). Then the smooth family of stationary kink/anti-kink

profiles λ 7→ Πλ ,δ ′ is spectrally unstable.
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Discussion



Open questions

• Our results constitute a thorough (nonlinear) instability theory for

static solutions to the sG equation on a Y -junction graph.

• Are there stable structures? Susanto and van Gils (2005) (Kogan et

al., 2000) considered a δ ′-interaction with λ = 0.

• They proposed a shifted profile which is apparently stable

(numerics).

• Conjecture 1: that structure is a minimizer of a certain energy for

λ = 0. (Work in progress.)

• Conjecture 2: there are particular structures that minimize Z - and

λ -energies. (Work in progress.)
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