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Heat equation in Rn

Let us study the following equation in Rn :

∂tu(t, x)−∆u(t, x) = 0, u(0, x) = u0(x), (1)

where ∆ =
n∑

k=1

∂2

∂x2k
is the Laplacian operator in Rn.

Recall that

F(u)(ξ) := û(ξ) =

∫
Rn

u(x)e+2πxi ·ξdx , ξ ∈ Rn;

and

F−1(û)(x) := u(x) =

∫
Rn

û(ξ)e2πxi ·ξdξ, x ∈ Rn.

Therefore, the solution of equation (1) is given by

u(t, x) = F−1
(
F(u0)(ξ)e

−|ξ|2t)(x).
since ∆̂u(ξ) = −|ξ|2û(ξ).
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Heat equation in Rn

Remarks:

1 Questions about well-posedness (regularity of the solution), i.e.

∥u∥X ⩽ C∥u0∥Y !,

2 Blow-up results, in which spaces !,

3 Other properties of the solutions.

All these questions are closely related with the considered spaces and the
nature of space-operator.

Rn is a very good space and hence we can sometimes work with the
explicit solution to get optimal and sharp estimates.
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Another form to express the solution

We have that

∂tu(t, x)−∆u(t, x) = 0, u(0, x) = u0(x).

So, we can also represent the solution as

u(t, x) = et∆u0(x).

In this case, et∆ generates a C0-semigroup, i.e., it is a map
T (t) : [0,+∞) → B(X ) (X a Banach space) such that

T (0) = I .

For all t, r ⩾ 0, it follows that T (t + r) = T (t)T (r).

For all x0 ∈ X , we have limt→0+ T (t)x0 = x0.

Thus, for our example, T (t) = et∆.
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Which operators generate a C0-semigroup

The Hille–Yosida theorem characterizes the generators of strongly
continuous semigroups of linear operators on Banach spaces.

Requests operators to be closed, densely defined, and

∥(λI − A)n∥ ⩽
C

(λ− ω)n
, λ > ω, n ∈ N, λ ∈ ρ(A).

for all positive integers n and any λ in the resolvent set ρ(A).
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L-Heat equation (General scenario)

Let us consider the following L-heat equation:

∂tu(t, x) + Lu(t, x) = 0, u(0, x) = u0(x),

where L is a “good enough” (maybe unbounded) operator.

For t > 0, we can use the functional calculus 1 (when it will be possible)
to obtain

u(t, x) = e−tL︸︷︷︸
S(t)−Solution operator

u0.

So, u satisfies the considered equation along with its initial condition.

1W. Arveson. A Short Course on Spectral Theory, vol. 209 (2006).
J.E. Restrepo November 28, 2024 8 / 39



L-Heat equation (General scenario)

Let us consider the following L-heat equation:

∂tu(t, x) + Lu(t, x) = 0, u(0, x) = u0(x),

where L is a “good enough” (maybe unbounded) operator.

For t > 0, we can use the functional calculus 1 (when it will be possible)
to obtain

u(t, x) = e−tL︸︷︷︸
S(t)−Solution operator

u0.

So, u satisfies the considered equation along with its initial condition.

1W. Arveson. A Short Course on Spectral Theory, vol. 209 (2006).
J.E. Restrepo November 28, 2024 8 / 39



Classical questions

So, at this stage, we can ask about the existence, uniqueness, asymptotic
behavior, norm estimates, properties, etc; of a solution of a partial
differential equation.

In particular, if we want to study Lp − Lq-norm estimates, we mainly
would like to have

∥u(t, ·)∥Lq = ∥e−tLu0∥Lq ≲ ∥e−tL∥G∥u0∥Lp ,

on a certain space G, where somehow we can just handle the propagator.

These questions are related with the study of Spectral and Fourier
multipliers ! A lot of works can be found in the literature, specially on
spectral ones.

Here we mention the recent general work 2. See the next slide!

2R. Akylzhanov, M. Ruzhansky. Lp − Lq multipliers on locally compact groups. J.
Funct. Anal. (2020).
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Work on locally compact groups (2020)

It was shown on a locally compact separable unimodular group 3:

1 G is the noncommutative Lorentz space 4, i.e.

∥ϕ(|L|5)∥Lp(G)→Lq(G) ≲ sup
s>0

ϕ(s)
(
τ(E(0,s)(|L|))

) 1
p
− 1

q ,

for 1 < p ⩽ 2 ⩽ q < +∞, where ϕ is a monotonically decreasing
continuous function on [0,+∞) with lim

v→+∞
ϕ(v) = 0, and L is a left

invariant operator6 on G .

3R. Akylzhanov, M. Ruzhansky. Lp − Lq multipliers on locally compact groups. J.
Funct. Anal. (2020).

4H. Kosaki. Non-commutative Lorentz spaces associated with a semi-finite von
Neumann algebra and applications. Proc. Japan Acad. Ser. A Math. Sci., (1981).

5L = U|L| with U an isometry and |L| is a nonnegative self-adjoint operator.
6LπL(g) = πL(g)L for all g ∈ G where πL(g)f (x) = f (g−1x).
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Direct application

Note that ϕ(v) = e−tv is decreasing on v ∈ [0,+∞) such that ϕ(0) = 1
and lim

v→+∞
ϕ(v) = 0.

Thus

∥e−tL∥Lp(G)→Lq(G) ≲ sup
s>0

e−st
(
τ(E(0,s)(L))

) 1
p
− 1

q .

Hence

Theorem (The L-heat equation)
Let G be a locally compact unimodular separable group and let L be a
positive left invariant operator (maybe unbounded) such that for some α
we have

τ(E(0,v)(L)) ≲ vα, v → +∞.

Then for any 1 < p ⩽ 2 ⩽ q < +∞ it follows

∥e−tL∥Lp(G)→Lq(G) ⩽ Cα,p,qt
−α

(
1
p
− 1

q

)
, t > 0.
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First questions

Can we refine the class of functions to prove Lp − Lq boundedness for
general propagators?

From which equations are coming these new classes of propagators?
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Other type of propagators

Figure: Fractional wave propagators functions for α = 1.95 bounded uniformly.
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Other type of propagators

Figure: Classical wave propagator function (green) is not uniformily bounded by a
decreasing vanishing at infinity function.
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Other type of propagators

Figure: Mittag-Leffler functions with one small parameter.
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Boundedness of some other type of propagators

Theorem

Let ϕ be a Borel measurable function on Sp(|L|). Suppose ψ is a
monotonically decreasing continuous function on [0,+∞) such that
0 < ψ(0) < +∞, lim

v→+∞
ψ(v) = 0 and ϕ(v) ⩽ ψ(v) for all v ∈ [0,+∞).

Then

∥ϕ(|L|)∥Lp(G)→Lq(G) ⩽ sup
v>0

ψ(v)
(
τ(E(0,v)(|L|))

) 1
p
− 1

q ,

for 1 < p ⩽ 2 ⩽ q < +∞. a b

aS. Gómez Cobos, J.E. Restrepo, M. Ruzhansky. Lp − Lq estimates for non-local heat
and wave type equations on locally compact groups. C. R. Acad. Sci. Paris, (2024).

bS. Gómez Cobos, J.E. Restrepo, M. Ruzhansky. Heat-wave-Schrödinger type
equations on locally compact groups. arXiv:2302.00721, (2023).
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Non-local heat type equation

Suppose that t > 0, x ∈ Rn, 0 < β < 1 and∫ t

0

(t − s)−β

Γ(1− β)
∂su(s, x)ds︸ ︷︷ ︸

C∂β
t u(t,x)

+∆u(t, x) = 0,

u(t, x)|
t=0

= u0(x).

The solution is given by

u(t, x) = F−1
(
F(u0)(ξ)Eβ(−|ξ|2tβ)

)
(x),

where the Mittag-Leffler function Eβ is defined as

Eβ(z) =
+∞∑
k=0

zk

Γ(βk + 1)
, z ∈ C.

For 0 < β < 1, the function Eα(−x) is completely monotonic 7.

7H. Pollard. The completely monotonic character of the Mittag-Leffler function
Ea(−x). Bull. Amer. Math. Soc. 54, (1948), 1115–1116.

J.E. Restrepo November 28, 2024 19 / 39



Non-local heat type equation

Suppose that t > 0, x ∈ Rn, 0 < β < 1 and∫ t

0

(t − s)−β

Γ(1− β)
∂su(s, x)ds︸ ︷︷ ︸

C∂β
t u(t,x)

+∆u(t, x) = 0,

u(t, x)|
t=0

= u0(x).

The solution is given by

u(t, x) = F−1
(
F(u0)(ξ)Eβ(−|ξ|2tβ)

)
(x),

where the Mittag-Leffler function Eβ is defined as

Eβ(z) =
+∞∑
k=0

zk

Γ(βk + 1)
, z ∈ C.

For 0 < β < 1, the function Eα(−x) is completely monotonic 7.
7H. Pollard. The completely monotonic character of the Mittag-Leffler function

Ea(−x). Bull. Amer. Math. Soc. 54, (1948), 1115–1116.
J.E. Restrepo November 28, 2024 19 / 39



Non-local heat type equation (General case)

We study the following equation:

C∂βt u(t)− Lu(t) = 0, t > 0, 0 < β < 1,

u(t)|
t=0

= u0,

where L : D ⊂ X → X is a closed linear operator densely defined in a
complex Banach space X .

The solution can be given by

u(t) = Eβ(−tβL)u0, t > 0.
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Properties of the solution operator Eβ(−tβL)

Definition

A family {Eβ(−tβL)}t⩾0 ⊂ B(X ) is called a solution operator of the
abstract fractional equation if the following conditions are satisfied:

1 Eβ(−tβL) is strongly continuous for t ⩾ 0 and Eβ(0) = I ;

2 Eβ(−tβL)D(L) ⊂ D(L) and LEβ(−tβL)w = Eβ(−tβL)Lw for any
w ∈ D(L), t ⩾ 0;

3 Eβ(−tβL)w is a solution of the abstract fractional equation for any
w ∈ D(L), t ⩾ 0.

J.E. Restrepo November 28, 2024 21 / 39



Remark on densely defined operators

Suppose that L : Dom(L) ⊂ H → H is a positive linear operator densely
defined in a separable Hilbert space H. Notice that the assumption on
densely defined operator allows us to think about operators of unbounded
type. In fact, if we consider an operator L : H → H defined in the whole
space (assume complex Hilbert space) and positive, then L is bounded
(Hellinger-Toeplitz Theorem).
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Explicit form of the solution operator

Let β ∈ (0, 2). The integral form of the solution operator can be written
as (see Prüss or Bajlekova)

Eβ(−tβL) = 1

2πi

∫
H
eγtγβ−1(γβ + L)−1dγ, t ⩾ 0,

for H ⊂ ρ(−L) (the resolvent set) and H is a suitable hankel’s path.

The above notation is consistent (convenient) since the integral

representation of the Mittag-Leffler function Eα(z) =
+∞∑
k=0

zk

Γ(αk + 1)
for

z ∈ C and ℜ(α) > 0 is given by

Eα(z) =
1

2πi

∫
H
eγγα−1(γα − z)−1dγ,

where H is a suitable Hankel path.
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Solution operator by means of the classical heat propagator

The fractional propagator can also be rewritten as follows

Eα(−tαL ) =

∫ +∞

0
Mα(s)e

−stαL ds, t ⩾ 0,

where {e−tL }t⩾0 is the C0− semigroup generated by −L , and

Mα(z) =
+∞∑
n=0

(−z)n

n!Γ(−αn + 1− α)
, z ∈ C, 0 ⩽ α < 1,

is the Wright-type function which is convergent in the whole z-complex
plane.

Some of the basic properties of this function are:

Mα(x) ⩾ 0 for all x ∈ (0,+∞),

∫ +∞

0
Mα(s)ds = 1,

and ∫ +∞

0
sγMα(s)ds =

Γ(γ + 1)

Γ(γα+ 1)
, γ > −1, 0 ⩽ α < 1.
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Solution operator by means of the classical heat propagator
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plane. Some of the basic properties of this function are:

Mα(x) ⩾ 0 for all x ∈ (0,+∞),

∫ +∞

0
Mα(s)ds = 1,

and ∫ +∞

0
sγMα(s)ds =

Γ(γ + 1)

Γ(γα+ 1)
, γ > −1, 0 ⩽ α < 1.
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L-evolutionary differential equations

For k ∈ PC, we now study the following equation:

∂t
(
k ∗ [w(s)− w0]

)
(t) + Lw(t) = 0, t > 0,

w(t)|
t=0

= w0.
(2)

Now, if we if we think about strong (differentiable) solution, we can then
rewrite equation (2) as∫ t

0
k(t − s)∂sw(s)ds + Lw(t) = 0

or (k ∗ ∂tw)(t) + Lw(t) = 0. Let us do the convolution with K , and
use the associativity of this operation along with (K ∗ k)(t) = 1, then∫ t

0
∂sw(s)ds + K ∗ Lw(t) = 0

which implies

w(t)− w0 +

∫ t

0
K (t − s)Lw(s)ds = 0.

The latter equation is an evolutionary integral equations of scalar type !
See the next slide...
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Evolutionary integral equation of scalar type

L-evolutionary integral equation of scalar type (L = k(t)L)

w(t) = h(t) +

∫ t

0
k(t − s)Lw(s)ds, t ⩾ 0,

where L is a closed linear unbounded operator in X and k ∈ L1loc(R+).

Development of the theory in e.g. “J. Prüss. Evolutionary Integral
Equations and Applications, Monogr. Math. 87, Birkhäuser, Basel, 1993.”
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Current problems with almost sectorial operators

Let Sµ := {z ∈ C \ {0} : |arg z | ⩽ µ} ∪ {0}. We consider the function arg
with values in (−π, π].

Definition (Almost sectorial operator)

Let −1 < γ < 0 and 0 ⩽ ω < π. By Θγ
ω(X ) we denote the set of all closed

linear operators A : D(A) ⊂ X → X which satisfy

(a) σ(A) ⊂ Sω.

(b) For any ω < µ < π, there exists a positive constant Cµ such that

∥(z − A)−1∥ ⩽ Cµ|z |γ , for any z /∈ Sµ.

It is important to recall that operators in the class Θγ
ω have the possibility

of having non-dense domain and/or range.
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Examples of these operators

The minus Laplacian in a bounded domain Ω is sectorial (this means
γ = 1) under some suitable boundary conditions in Lp(Ω).

Moreover, it is also sectorial in the spaces of bounded or continuous
functions.

While, in the space of Hölder continuous functions, the minus Laplacian is
almost sectorial, see e.g. Example 3.1.33 of 8. Therefore, it does not
generate a C0-semigroup.

8A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems.
Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 1995.
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Some of the references in this field

1 G. Da Prato. Semigruppi di crescenca n. Ann. Scuola Norm. Sup.
Pisa, 20(3), (1966), 753–782.

2 G. Da Prato, E. Sinestrari. Differential operators with non dense
domain. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14(4), (1987),
285–344.

3 N. Okazawa. A generation theorem for semigroups of growth order α.
Tohoku Math. J., 26, (1974), 39–51.

4 F. Periago, B. Straub. A functional calculus for almost sectorial
operators and applications to abstract evolution equations. J. Evol.
Equ., 2, (2002), 41–68.
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First try: Non-local in time heat type equations

1 We want to study the existence and uniqueness of solutions of

C∂βt u(t) + Au(t) = f (t, u(t)), t ∈ [0,T ], T > 0, 0 < β < 1,

where u(0) = u0 ∈ X , X is a Banach space, A : D(A) ⊂ X → X is a
closed, non-densely defined, almost sectorial operator and
f : (0,T ]× X → X is continuous with respect to t and it satisfies
certain conditions.

It was done in 2012 ! 9

The most interesting part is how to construct the solution operator by
using the functional calculus for a.s.o. of Periago and Straub (2002).

9R-N. Wang, D-H. Chen, T-J. Xiao. Abstract fractional Cauchy problems with
almost sectorial operators. J. Differ. Equ. 252(1), (2012), 202–235.
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Non-local in time wave type equation

1 We study the existence and uniqueness of solutions (mild, classical,
etc) of

C∂βt u(t) + Au(t) = f (t, u(t)), t ∈ [0,T ], T > 0, 1 < β < 2,

where u(0) = u0 ∈ X , X is a Banach space, A : D(A) ⊂ X → X is a
closed, non-densely defined, almost sectorial operator and
f : [0,+∞)× X → X is a continuous function ...

Again, the most interesting part is how to construct the solution operator
by using the functional calculus for a.s.o. of Periago and Straub (2002).
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Direct abstract Cauchy problem with a time-dependent
variable coefficient

J.E. Restrepo. Direct and inverse abstract Cauchy problems with
fractional powers of almost sectorial operators. arXiv:2408.00240, (2024).

We consider the abstract Cauchy problem in a complex Banach space X
with the coefficient ϕ(t) (ϕ(t) > 0 for t > 0) and A ∈ Θγ

ω

(
0 < ω < π/2

)
as follows:

ut(t) = ϕ(t)Aαu(t), 0 < t < T , 0 < α <
π

2ω
,

u(0) = u0 ∈ X .
(3)
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The solution operator

Assume also that A ∈ Θγ
ω. So, we have that

Tα(t) =
1

2π

∫
Γθ

e−tzα(z − A)−1dz , ω < θ < µ,

is a bounded linear operator in X . Note that the above expression for
Tα(t) could be also denoted by e−tAα

.

This operator is an analytic semigroup of growth order γ+1
α , i.e.

1 Tα(t + s) = Tα(t)Tα(s) for any t, s ∈ Sπ
2
−αω.

2 There exists a positive constant C (γ, α) such that

∥Tα(t)∥ ⩽ Ct−
γ+1
α , for any t > 0.

3 The function t → Tα(t) is analytic in S0
π
2
−αω and

dk

dtk
Tα(t) = (−1)kAkαTα(t), for all t ∈ S0

π
2
−αω.
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Solution operator

Below we show that the solution operator Tα,ϕ(t) of problem (3) has an
explicit representation in terms of the coefficient ϕ(t) and the analytic
semigroup Tα(t) of growth order γ+1

α .

Theorem

Let X be a complex Banach space. Then the solution operator of problem
(3) is given by:

Tα,ϕ(t) = Tα

{(∫ t

0
ϕ(s)ds

)}
, 0 < t < T .

Basically, we have that

Tα,ϕ(t) = e−(
∫ t
0 ϕ(s)ds)Aα

, 0 < t < T .
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Some relate works

1 W.A.A. de Moraes, J.E. Restrepo, M. Ruzhansky. Heat and wave
type equations with non-local operators, I. Compact Lie groups. Int.
Math. Res. Not. IMRN. (2), (2024), 1299-1328.

2 S. Gómez Cobos, J.E. Restrepo, M. Ruzhansky. Lp − Lq estimates for
non-local heat and wave type equations on locally compact groups.
C. R. Acad. Sci. Paris 362, (2024), 1331–1336.

3 J.E. Restrepo, M. Ruzhansky, B.T. Torebek. Integro-differential
diffusion equations on graded Lie groups. Asymptotic Anal., (2024).

4 S. Gómez Cobos, J.E. Restrepo, M. Ruzhansky. Evolutionary
integro-differential equations of scalar type on locally compact
groups. Under review 2024.

5 M. Chatzakou, J.E. Restrepo, M. Ruzhansky. Heat and wave type
equations with non-local operators, II. Hilbert spaces and graded Lie
groups. Under review 2024.
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Thank you!
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