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A motivation: Bojanov’s variant of the Chebyshev problem
Write ∥.∥ for the sup norm over a given interval [a, b].

Theorem (Bojanov, 19791)
Let ν1, ν2, . . . , νn be positive integers. Given [a, b] there exists a
unique set of points a ≤ x∗

1 ≤ x∗
2 ≤ . . . ≤ x∗

n ≤ b such that

∥(x − x∗
1 )ν1(x − x∗

2 )ν2 . . . (x − x∗
n )νn∥

= inf
a≤x1≤x2≤...≤xn≤b

∥(x − x1)ν1(x − x2)ν2 . . . (x − xn)νn∥ .

Moreover, a < x∗
1 < x∗

2 < . . . < x∗
n < b. The extremal polynomial

T (x) := (x − x∗
1 )ν1(x − x∗

2 )ν2 . . . (x − x∗
n )νn is characterized by the

following equioscillation property: there exists an array of points
a = t0 < t1 < t2 < . . . < tn−1 < tn = b such that

T (tk) = (−1)νk+1+···+νn∥T∥ (k = 0, 1 . . . , n).

1A generalization of Chebyshev polynomials, J. Approx. Theory 26 (1979),
no. 4, 293–300.
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Connection to the classical Chebyshev problem
This contains the classical Chebyshev problem – where all νj = 1 –
but here the occurring polynomials do not form a vector space2.

Moreover, the family of all Bojanov-Chebyshev polynomials for the
given sequence (ν1, . . . , νn) is not a Chebyshev-Haar system.
Also, different ordering of the same "multiplicity sequence" (νi)
leads to different problems (as the xi is assumed to increase).
One can consider the "global version": (x1, . . . , xn) ∈ [0, 1]n only,
or deal with the (harder) version with given order.
Reformulation by taking logarithm (c.f. potential theory approach):

log |(x − x1)ν1(x − x2)ν2 . . . (x − xn)νn | =
n∑

j=1
νj log |x − xj |.

Logarithmic version of Bojanov’s extremal problem:

minimize sup
[0,1]

n∑
j=1

νj log | · −xj |.

2The linear span is PN with N =
∑

i νi . 4/57
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Weights, variable majorants and snake polynomials
Weighted case: given a weight w(x) ≥ 0,

minimize ∥w(x)(x − x1)ν1(x − x2)ν2 . . . (x − xn)νn∥ .

Note that (denoting ∥p∥w := ∥pw∥, as usual)

∥p∥w = C ⇔ −C
w(x) ≤ p(x) ≤ C

w(x) (∀x ∈ [a, b]), &C is best.

It is logical to introduce W (x) := 1/w(x) and consider

−CW (x) ≤ p(x) ≤ CW (x) (∀a ≤ x ≤ b).

Then we are to minimize the constant C , needed for the validity of
these bounds.
If ν1 = · · · = νn = 1, very general results are known, even for
non-symmetric norms (when lower and upper bounds differ):

CU(x) ≤ p(x) ≤ CV (x).
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Snake polynomials with asymmetric bounds / norms
Extremal polynomials equioscillate between these bounds3.
(Such extremal polynomials are called "snake polynomials".)

A snake polynomial with bounds U ≤ p ≤ V .

V(x)

p(x)

U(x)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

1

2

3

4

y

3Karlin, Representation theorems for positive functions, J. Math. Mech. 12
(1963), 599–617
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The general weighted minimization problem
In this presentation we consider a vector of multiplicities
ν := (ν1, . . . , νn) and look for optimal location of ordered nodes
0 =: x0 ≤ x1 ≤ · · · ≤ xn ≤ xn+1 := 1 with smallest possible ∥ · ∥w .
(We cannot deal with asymmetric weights.)

We fix the order of the nodes with the given multiplicities. That is,
x := (x1, . . . , xn) ∈ S, with S := {x : 0 < x1 < · · · < xn < 1}
"the simplex".
Further we will assume, that w ≥ 0 is bounded and that w ̸≡ 0.
Taking logarithms reformulates the extremal problem

minimize sup
t∈[0,1]

{
log |w(t)| +

n∑
i=1

νi log |t − xi |
}

.

More generally, we consider the sum of translates function

F (x, t) := J(t) +
n∑

i=1
Ki(t − xi) (x := (x1, . . . xn) ∈ S).

where the Ki are kernel functions, while J : [0, 1] → R := [−∞, ∞)
is an external field function. (In particular, Ki = νiK is possible.)
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Generality of considerations

One goal is to keep J(x) := log w(x) as general as we can (within
assuming 0 ≤ w ≤ C , ̸≡ 0), but still allow log | · | be replaced by
more general K . A point, e.g., is to allow w := χE for E ⊂ [0, 1].

In the first part we will only assume that J is bounded from above
and ̸= −∞ at least on n + 1 points. (Here the endpoints 0, 1 are
counted with weight 1/2 only!)
We will term this by saying that J is non-degenerate, "J ̸≡ −∞".

The non-degeneracy condition "J ̸≡ −∞" is an absolutely minimal
assumption on J . It is equivalent to postulate that for all y ∈ S we
have F (y, ·) ̸≡ −∞.

In the first part of the study we will keep also the kernels very
general: we can allow totally different kernels Ki , satisfying some
natural and minimal conditions (what νi log | · | does satisfy).
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Our setup I - Properties of kernel functions
A function K : (−1, 0) ∪ (0, 1) → R is a kernel function if
(i) it is concave both on (−1, 0) and on (0, 1), and
(ii) if it also satisfies

lim
t↓0

K (t) = lim
t↑0

K (t). (1)

Such a function has an extended continuous extension

K : [−1, 1] → R := R ∪ {−∞},

that is, the limits

lim
t↓−1

K (t), lim
t↑1

K (t), lim
t↑0

K (t), lim
t↓0

K (t)

exist, and K (0) := limt→0 K (t) = limt↓0 K (t) = limt↑0 K (t).
Note that, indeed, the limits above can be −∞ but not ∞.
A stronger condition is singularity, i.e. assuming about (1) that

K (0) := lim
t→0

K (t) = −∞. (∞)
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Our setup II - Further properties of kernel functions

A kernel function K is a strictly concave kernel function if it is
strictly concave on both of the intervals (−1, 0) and (0, 1).

We say that the kernel function K is monotone if

K is decreasing on [−1, 0) and increasing on (0, 1]. (M)

Under assumption (M) K (−1), K (1) ∈ R by concavity.
Another assumption – introduced by Fenton4 – is the "cusp
condition" that K (or, sometimes, J) satisfies

lim
t,x↑0

K (t) − K (x)
t − x = −∞ and lim

t,x↓0

K (t) − K (x)
t − x = ∞. (∞′

±)

Observe that Condition (∞) implies, by concavity, (∞′
±), too.

Note that r log | · | (r > 0) satisfies all the above.

4A min-max theorem for sums of translates of a function, J. Math. Anal.
Appl. 244 (2000), no. 1, 214–222.
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Examples for singular & nonsingular kernel functions
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The singular logarithmic kernel
(left) and the non-singular square
root kernel (right).
Even the latter is subject to the
cusp condition (∞′

±).
We do not need evenness.
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Our setup III - The sum of translates function F

Recall: the set S := {y : y ∈ [0, 1]n, 0 < y1 < · · · < yn < 1}
is called the open simplex. The closed simplex is its closure:

S := {y : y ∈ [0, 1]n, 0 ≤ y1 ≤ · · · ≤ yn ≤ 1}.

For given kernels5 Kj the sum of translates function is

F (y, t) := J(t) +
n∑

j=1
Kj(t − yj) (y ∈ S, t ∈ [0, 1]). (2)

(As said, J , Kj can attain only −∞, but not +∞, thus summing
their translates leads to computable results.)

For Kj being concave, the non-degeneracy assumption "J ̸≡ −∞"
is in fact equivalent to that F (y, ·) ̸≡ −∞ (∀y ∈ S), always.

5The Bojanov case is Kj := νj log | · |. More generally, it is of special interest
when the kernels are constant multiples of each other: Kj = rjK .
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Our setup IV - minimax and maximin goal functions
Set y0 := 0 and yn+1 := 1. For y ∈ S and 0 ≤ j ≤ n put

Ij(y) := [yj , yj+1], mj(y) := sup
t∈Ij (y)

F (y, t),

and
m(y) := max

j=0,...,n
mj(y) = sup

t∈[0,1]
F (y, t),

m(y) := min
j=0,...,n

mj(y).

Goals. The Minimax Problem: minimize m(y) on y ∈ S;
M := M(S) := inf

y∈S
m(y) = inf

y∈S
sup
[0,1]

F (y, ·);

and dually, the Maximin Problem: maximize m(y) on S;
m := m(S) := sup

y∈S
m(y).

We also aim at characterizing solution node systems (if any) and
find, describe or approximate extremal values.
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An illustration of our setup without any weight
An example for the graph of a sum of translates function F (x, ·).
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Illustration in case of a weighted situation
F (x, ·) in case of the weight w chosen as the indicator function
χE of E := [1/4, 1/2] ∪ [3/4, 1], J(t) := log w(t).
We put K (t) := log |t|, x1 = 1/3, x2 = 2/3.
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Theorem of Fenton from 2000
Theorem (Fenton6)
Let the field J : (0, 1) → R be concave, and the kernel K be
monotone (M), strictly concave and C2, with K ′′ < 0 on
(−1, 0) ∪ (0, 1) and satisfying the cusp condition (∞′

±), too.
Then for F (y; t) := J(t) +

∑n
j=1 K (t − yj) there exists an extremal

(minimax) node system w := (w1, . . . , wn) in the open simplex S:

M(S) := inf
y∈S

m(y) := inf
y∈S

sup
[0,1]

F (y; ·) = m(w) := sup
[0,1]

F (w; ·). (3)

Moreover, F (w, ·) equioscillates on the intervals Ij(w) = [wj , wj+1]:

m0(w) = m1(w) = · · · = mn(w).

Furthermore, w is the unique equioscillation node system, and it is
the only maximin point: m(S) := supy∈S m(y) = m(w), too.

6A min-max theorem for sums of translates of a function, J. Math. Anal.
Appl. 244 (2000), no. 1, 214–222.
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Theorem of Fenton from 2000 - continued
An immediate consequence of the uniqueness and coincidence of
the minimax=maximin=equioscillation point is that the so-called
"Sandwich Property" M(S) = m(S) holds. Equivalently,

m(x) := min
j=0,...,n

mj(x) ≤ M(S) ≤ m(x) := max
j=0,...,n

mj(x) (∀x ∈ S).

Fenton’s goal was to prove a conjecture of P.D. Barry about entire
functions with minimal growth7, which was solved somewhat
earlier by different methods by A. A. Goldberg8.

Fenton’s Theorem immediately implies the solution to the
Chebyshev Problem–but not of the Bojanov Problem.

Moreover, it is seen that the local/interval maxima mj(x) of any
node system approximate the extremum from both sides.

7The minimum modulus of small integral and subharmonic functions, Proc.
London Math. Soc. (3) 12 (1962), 445–495.

8The minimum modulus of a meromorphic function of slow growth, Mat.
Zametki 25 (1979), no. 6, 835–844.
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Two-sided approximation in the Chebyshev Problem
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The torus setup – Phd thesis of Ambrus from 2009
Theorem (Ambrus, Ball, Erdélyi, 20139)
For any array z1, . . . , zn of complex numbers of modulus 1, there
exists a complex number z also of absolute value 1, such that

n∑
j=1

1
|z − zj |2

≤ n2

4 .

The inequality is sharp, with equality if and only if the zj are
equidistant (nth roots) zn

j = c (|c| = 1) for all j = 1, 2, . . . , n.

This is also a maximin theorem: maxzj minz
∑n

j=1
1

|z−zj |2 = n2

4 .

If z = eit and w = eis (t, s ∈ R), then |z − w | = 2| sin t−s
2 |, hence

introducing K (t) = − 1
4 sin2(t/2) , the problem can be rewritten as

min
t1,...,tn∈[−π,π]

max
t∈[−π,π]

n∑
j=1

K (t − tj) =?

9Chebyshev constants for the unit circle, Bull. Lond. Math. Soc. 45
(2013), no. 2, 236–248. 19/57
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The conjecture of Ambrus and Ball

Apart from solving the K (t) := − 1
4 sin2(t/2) case, Ambrus and Ball

formulated the following, too.

Conjecture
If K is any concave kernel function, then the minimax is achieved
exactly when the nodes are distributed equidistantly (zn

j = c).

Theorem (Hardin, Kendall, Saff, 201310)
TRUE. (They assume symmetry / evenness / monotonicity..)
Moreover, if K is strictly concave, then such configurations are the
only ones achieving this equality.
No unicity: any rotated system is equidistant, too.

To cure this, let us fix one node at y0 := 0; change n −→ n + 1.

10Polarization Optimality of Equally Spaced Points on the Circle for Discrete
Potentials, Discrete Comput. Geom. 50 (2013), no. 1, 236–243.
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More on the unit circle
We may be interested in absolutely different kernels: K0, . . . , Kn.

If we use different kernels, then we cannot expect the extremal
configuration to be an equidistant one.
But it can still equioscillate. A node system equioscillates, if all
mj(y) are equal; in other words, if all mi+1(y) − mi(y) = 0.
Accordingly, we introduce the "interval maxima vector function"

m(y) := (m0(y), . . . , mn(y)) : Tn → Rn+1

and the "difference function"

Φ(y) := (m1(y) − m0(y), . . . , mn(y) − mn−1(y)) : Tn → Rn. (4)

A node system is thus equioscillating iff Φ(w) = 0.
Also, a node system x majorizes y if mi(x) ≥ mi(y) (i = 0, . . . , n).
Two-sided approximation of an equioscillating w means that no x
would majorize it (w cannot majorize x, for m(w) is minimal.)
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Questions of existence and unicity on the unit circle
A natural question: Is Φ−1(0) empty, one point, several points?

Unicity holds not only for the equioscillating node system!

Theorem (Homeomorphism theorem on the torus)
Let the kernels Kj belong to C2(0, 2π), be strictly concave even
with K ′′

j < 0, and singular (∞) (j = 0, . . . , n).
Consider F (y, t) = K0(t) +

∑n
j=1 Kj(t − yj) for y ∈ S.

Then the difference mapping Φ : S → Rn is a homeomorphism.
Inspiration was gained from the famous solution11 of the Bernstein
Conjecture on the optimal Lagrange interpolation.
We proved local homeomorphism via nonvanishing of the Jacobian,
proved properness of the mapping, and finally applied general
topology12 to derive the global homeomorphism.

11Kilgore, A characterization of the Lagrange interpolating projection with
minimal Tchebycheff norm, J. Approx. Theory 24 (1978), no. 4, 273–288.

12Eilenberg, Sur quelques propriétés des transformations localement
homeomorphes, Fundam. Math. 24 (1935), 35–42
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Minimax results on the torus
Theorem (A global minimax theorem on the torus)
Suppose the kernel functions K0, K1, . . . , Kn are strictly concave
and either all satisfy (∞′

±), or all belong to C1(0, 2π).
Then there is a global minimax node system w ∈ Tn with

M := inf
y∈Tn

sup
t∈T

F (y, t) = sup
t∈T

F (w, t).

Moreover, we have the following:
(a) w is an equioscillation point: m0(w) = · · · = mn(w).
(b) w ∈ S := Sσ for some open simplex (the nodes are different),

and
(c) The Sandwich Property M(S) = M = m(S) holds on S, i.e.

m(x) ≤ M ≤ m(y) (∀x, y ∈ S).

The result holds only in this global version – there are
counterexamples for specific individual simplexes.
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Key ingredients
As a Corollary, we could prove the trigonometric version of the
Bojanov Theorem. But the method did not allow general weights.

Main ingredients: 1.) Regularity (continuity and more).
2.) Some Perturbation Lemma results.
3.) The Homeomorphism Theorem under suitable assumptions.
4.) A limiting argument from the version where the more stringent
conditions of the Homeomorphism Theorem hold.
Due to limit, unicity is lost. We have unicity only in 3.).
Remark
For approximation theory (i.e. logarithmic potential theory) and
the strong polarization problem singularity is a natural condition.
However, Fenton’s Theorem extends to nonsingular kernels, where
the Homeomorphism Theorem (surjectivity) necessarily fails.
In the nonsingular case, continuity, existence of some
equioscillating node system, unicity, intertwining all need to be
proved independently of that result.
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Goals in extending the results from T to the case of [0, 1]

Give a description of the interval case which allows for weights.

Include the case when we restrict to n + 1 points (Lagrange
interpolation).

Allow very general weights covering, e.g., the case of Chebyshev
polynomials for the union of k disjoint closed intervals.

Free ourselves from regularity and monotonicity conditions, as
much as possible.

Be enough general to get back all periodic case results – even with
weights!

Discuss non-majorization (intertwining) issues in general (not just
for equiosillating systems).
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Continuity of the interval maxima functions mj

Proposition
Let K1, . . . , Kn be arbitrary kernel functions and J : [0, 1] → R be
an extended continuous field function on [0, 1].
Then for each j ∈ {0, 1, . . . , n} the function mj : S → R is
extended continuous.

From F ̸≡ −∞ it follows that m : S → R is real valued continuous.
We could use the well-known principle that if g ∈ C(A × B) with
compacts A, B, then the partial maxima function

G(x) := max
y∈B

g(x , y) is continuous on A.

Actually–due to the maximum operation–this works even for J
being only upper semicontinuous – an important case for example
regarding application to the union of k closed intervals .

But what if J is not even u.s.c.?
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regarding application to the union of k closed intervals .

But what if J is not even u.s.c.?

26/57



Continuity of the interval maxima functions mj

Proposition
Let K1, . . . , Kn be arbitrary kernel functions and J : [0, 1] → R be
an extended continuous field function on [0, 1].
Then for each j ∈ {0, 1, . . . , n} the function mj : S → R is
extended continuous.
From F ̸≡ −∞ it follows that m : S → R is real valued continuous.
We could use the well-known principle that if g ∈ C(A × B) with
compacts A, B, then the partial maxima function

G(x) := max
y∈B

g(x , y) is continuous on A.

Actually–due to the maximum operation–this works even for J
being only upper semicontinuous – an important case for example
regarding application to the union of k closed intervals .

But what if J is not even u.s.c.?

26/57



The first miracles happen...

Proposition (Regularity of mj for singular kernels)
Let K1, . . . , Kn be arbitrary singular kernel functions (∞), and
J : [0, 1] → R be an arbitrary field function.

Then the functions mj : S → R are extended continuous.
Moreover, all mj are locally Lipschitz continuous wherever finite.
So, we have Lipschitz continuity at regular y , i.e. if y belongs to

Y := {y ∈ S : mj(y) > −∞ (j = 0, . . . , n)} =
n⋂

j=0
{mj > −∞}.

Lipschitz continuity is important, as it entails a.e. differentiability.

The next example illustrates that singularity of kernels is needed!
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Example: Kj ’s are not singular,
Φ is neither continuous nor surjective

Let n = 1 and set y = (y),

J(t) :=
{

0, if 0 ≤ t < 1/2,

1, if 1/2 ≤ t ≤ 1,
and K (t) :=

√
|t|.

One can check

z0(y) =
{

0, if 0 ≤ y < 1/2,

1/2, if 1/2 ≤ y ≤ 1,
and z1(y) = 1.

Therefore we can write

m0(y) =
{√y , if 0 ≤ y < 1/2,√

y − 1/2 + 1, if 1/2 ≤ y ≤ 1,

m1(y) = 1 +
√

1 − y .
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Example: Φ is neither continuous nor surjective – graph

0.2 0.4 0.6 0.8 1.0
y

-1.0

-0.5

0.5

1.0

1.5

2.0

The graph of the difference function m1(y) − m0(y)
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Weakening the condition of monotonicity
Definition
K satisfies a periodized monotonicity condition with c(≥ 0), if

K ′(t) − K ′(t − 1) ≥ c for a.a. t ∈ (0, 1). (PMc)

Note that (PM0) is a condition stating that K is the sum of a
periodic and a monotone function.
Similarly, PMc means that K is the sum of a periodic function and
a strictly monotone function with derivative at least c a.e.
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A typical kernel satisfying (PMc)
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Towards a Homeomorphism Theorem
How far the Homeomorphism Theorem may be extended?

It turned out fast that kernels need to be singular for this.

For Φ to be onto Rn, this is about clear; but even continuity fails.

Theorem (Clarke13)
Let U be an open subset of Rn and let f : U → Rn be a locally
Lipschitz function.
Further, let x0 ∈ U be a point such that DClarkef (x0) has full rank.
Then f is a bi-Lipschitz homeomorphism in a neighbourhood of x0.
With this we proved that Φ is a local homeomorphism.

To extend local to global, we needed two more facts:
(i) that Φ is proper (standard) and that
(ii) Y is connected (miraculously...).

13On the inverse function theorem, Pacific J. Math. 64 (1976), no. 1,
97–102.
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The Homeomorphism Theorem

Theorem
Suppose that the singular kernel functions K1, . . . , Kn satisfy
(PMc) for some c > 0 and take an arbitrary field function J.

Then the interval maxima difference function, restricted to Y , i.e.

Φ|Y : Y → Rn, x 7→ (m1(x) − m0(x), . . . , mn(x) − mn−1(x))

is a bi-Lipschitz homeomorphism between Y and Rn.
Moreover, the same remains in effect under only assuming (PM0)
on the kernels, provided J satisfies either a singularity condition or
a cusp condition.
The last part is important as it allows to extend even to the
periodic case! With almost arbitrary field functions!!
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Towards minimax results

In the rest of the talk we will confine ourselves to "Bojanov-type"
kernel systems, where Kj = rjK with one base kernel K . Also, we
will restrict to singular kernels.

Also, to be allowed to talk about maximum points, we assume that
J is upper semicontinuous (u.s.c.).

Surprisingly, after getting through proofs which badly fail for not
u.s.c. fields, at the end we were still able to remove this condition
from several of our results.

A condition we badly need is monotonicity (M)–here we cannot get
around monotonicity by some relaxed, periodized conditions. The
main reason is the use of perturbation lemmas, which work for
monotone kernels only.
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A very precise perturbation lemma
Lemma (Strong Maximum Perturbation Lemma)
Let K be a kernel function subject to the monotonicity condition
(M) and J : [0, 1] → R be an u.s.c. field.
Further, let w ∈ S be a non-degenerate node system, and let
I ∪ J = {0, 1, . . . , n} be a non-trivial partition of {0, . . . , n}.
Then, arbitrarily close to w, there exists w′ ∈ S \ {w} with

F (w′, t) ≤ F (w, t) (∀t ∈ Ii(w′)) and Ii(w′) ⊆ Ii(w) (i ∈ I); (5)
F (w′, t) ≥ F (w, t) (∀t ∈ Ij(w)) and Ij(w′) ⊇ Ij(w) (j ∈ J ). (6)

As a result, we also have

mi(w′) ≤ mi(w) (i ∈ I) and mj(w′) ≥ mj(w) (j ∈ J ). (7)

Moreover, if K is strictly concave and hence strictly monotone,
then (5) and (6) are strict for all points where J(t) ̸= −∞.
Furthermore, (7) is also strict for all indices k with non-singular
Ik(w); in particular, for all indices k in case w ∈ Y .
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The structure of proofs explained
How do we obtain minimax and equioscillation theorems?

The recipe is clear: we try to "improve"–i.e. change to smaller
m(x)–the maxima for any arbitrary node system x ∈ S.
If m(x) = mj(x), then we want to find a perturbation x′ of the
system x, with mj(x′) lowered.

0.2 0.4 0.6 0.8 1.0
x
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-0.5

0.5
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Use of the Perturbation Lemma
Even if there are n equal attainment of the maximum m(x), we
can (according to the Perturbation Lemma) lower each of them
simultaneously–at the expense of somewhat (continuity !) raising
the (otherwise smaller) n + 1st maximum.

0.2 0.4 0.6 0.8 1.0

-1.0
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-0.4

-0.2

0.2

Therefore, an extremal node system must equioscillate.
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The Minimax Theorem
Theorem (Minimax Equioscillation Theorem - Singular Case)
Let K be singular (∞) and monotone (M), and let J be u.s.c.
arbitrary.

Then M(S) = m(S) and there exists some node system w ∈ S,
also belonging to Y (⊂ S), with the three properties that it is an
equioscillating point, it attains the simplex maximin and also it
attains the simplex minimax: m(w) = m(S) = M(S) = m(w).
In particular, the so-called Sandwich Property holds: for any node
system x ∈ S we have m(x) ≤ M(S) = m(S) ≤ m(x), and
M(S) = m(S) is the unique equioscillation value.
If in addition the kernel K is strictly monotone, – or even if only
satisfies (PMc) – then w is unique.
Taking J ≡ 0 and rj := νj , K := log | · | we get Bojanov’s result.
Taking J := log χE and all rj = 1, K := log | · | we get Chebyshev
polynomials for the set E .
We obtain both with weights, too.
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In particular, the so-called Sandwich Property holds: for any node
system x ∈ S we have m(x) ≤ M(S) = m(S) ≤ m(x), and
M(S) = m(S) is the unique equioscillation value.
If in addition the kernel K is strictly monotone, – or even if only
satisfies (PMc) – then w is unique.
Taking J ≡ 0 and rj := νj , K := log | · | we get Bojanov’s result.
Taking J := log χE and all rj = 1, K := log | · | we get Chebyshev
polynomials for the set E .

We obtain both with weights, too.
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Sandwich Property, Majorization and a Suprise
Theorem (Intertwining theorem)
Let K be a singular (∞), strictly concave and (strictly) monotone
kernel and let J : [0, 1] → R be an u.s.c. / arbitrary field function.
Then for nodes x, y ∈ Y majorization cannot hold, i.e., the
coordinatewise inequality m(x) ≤ m(y) can only hold if x = y.

Corollary
Consider the Chebyshev problem, where K (t) := log |t|, J(t) ≡ 0,
and so we have strict concavity and monotonicity.
Then for any two node systems x, y ∈ S ∃0 ≤ i ̸= j ≤ n such that

max
t∈Ii (x)

|
n∏

k=1
(t − xk)| < max

t∈Ii (y)
|

n∏
k=1

(t − yk)|,

max
t∈Ij (x)

|
n∏

k=1
(t − xk)| > max

t∈Ij (y)
|

n∏
k=1

(t − yk)|.

This seems folklore if one of the node systems is the extremal one.
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Chebyshev’s problem and intertwining of local maxima
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Two arbitrary node systems generate intertwining local maxima
vectors.
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Intertwining of local maxima for non-singular kernels

Conjecture
Intertwining still holds for arbitrary (non-singular) strictly concave
and (strictly) monotone kernel K and u.s.c. field function J.

We could prove14 this for n = 1, 2, 3.

In particular, if there exists some equioscillating node system, then
it is unique. (Indeed, if y, w ∈ Y are two equioscillating node
systems, then e.g. mi(y) ≥ mi(w), i = 0, 1, . . . , n, hence y = w.)

So, even if we don’t have the Homeomorphism Theorem, we may
still derive uniqueness.

We see no reason for this statement to fail!

However, it holds probably only under some monotonicity
assumptions on K .

14On intertwining of maxima of sum of translates functions with nonsingular
kernels, Tr. Inst. Mat. Mekh. 28 (2022), no. 4, 262–272.
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Further advances comprising even non-singular K
Our results are in general stronger than Fenton’s was.

Except for the condition of singularity, which Fenton assumed only
in the weaker form of a cusp condition.

Theorem
Let n ∈ N, ν1, . . . , νn > 0, K be a monotone (M) kernel function
and J be an arbitrary n-field function.
Then M(S) = m(S) and there exists some node system w ∈ S with

m(w) = M(S) = min
x∈S

m(x).

Further, for any equioscillation point e we have m(e) = M(S).
Moreover, if J is upper semicontinuous or K is singular then there
exists, in fact, an equioscillation point.
Furthermore, strict majorization mi(x) > mi(y) (i = 0, . . . , n)
cannot hold for any x, y ∈ Y .
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"Table of Contents" for the proof
Concerning Bernstein-Erdős-type equioscillation characterization
for some minimax problems Shi presented15 an abstract approach
for certain differentiable functions.

However, his conditions involve
assumptions on the Jacobian of the interval maxima vector
function m and also a singularity type condition, which are not met
here.
After auxiliary results we prove the Theorem in the following steps.

1. We prove for continuous J that majorization cannot hold on
Y .

2. We prove that majorization cannot hold on Y if J is u.s.c..
3. We show, for u.s.c. J , the existence of an equioscillation point

and then also the minimax/maximin result.
4. We handle the case of general J when K is singular.
5. We tackle the case of general J when K is non-singular.

15A minimax problem admitting the equioscillation characterization of
Bernstein and Erdős, J. Approx. Theory 92 (1998), no. 3, 463–471.
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Summary
Taking absolute values and then logarithms of polynomials
transform classical problems to minimax problems on sum of
translate functions. (Potential theory, Fenton.)

The most essential requirement is that we know the number of
factors n in the product representation of the occurring
"polynomials" and that these factors be log-concave.

In contrast, for the weight w = eJ very general conditions suffice.

The approach is incapable of handling asymmetric bounds.

However, in most classical cases signs of the polynomials can be
retrieved by a simple sign (number of factors) analysis.

Apart from providing solutions or new proofs for classical problems,
strong general principles, such as unicity (bi-Lipschitz
homeomorphism) and intertwining (non-majorization) reveal
themselves.
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Applications I

▶ Fenton himself applied his method to the theory of entire
functions. It is still to be studied if this direction of
applications can furnish new proofs or even new results in that
field.

▶ Ambrus, Ball and Erdélyi have dealt with the so-called "strong
polarization problem", akin the "linear polarization constant
problem" of functional analysis.

▶ Logarithmic potential theory is very closely connected to our
study. Chebyshev constants and their estimates for various
sets like union of k intervals can be studied by the method.

▶ Several problems of interpolation theory, most notably
Hermite-Fejér interpolation on free nodes, can be studied by
the method (Mycielski-Paszkowski result).
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Applications II

▶ As explained, Chebyshev polynomials and Bojanov-Chebyshev
polynomials can be studied by the method. Even for the
classic Chebyshev polynomials, intertwining results seem to
have remained unnoticed until this study.

▶ Currently, we with Béla Nagy are working towards a version
where instead of univariate kernels K , which are translated as
K (· − x), we allow bivariate kernels. In integral operators and
general abstract potential theory such bivariate kernels occur,
but the univariate specifications K (·, x) at different fixed
nodes x can behave very differently for different x (as they are
not just translates of each other).
These can be further applied to study Blaschke products∏n

j=1

(
xj −t
1−xj t

)
whose factors usually depend on two variables,

with one of the parameters determining the root or pole, and
the other remaining a variable.
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Applications III

If succeeding, the respective theory may be suitable to obtain
further results for meromorphic functions or approximation
with rational functions.
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Open Questions I

▶ If K is nonsingular, the Homeomorphism Theorem fails badly.
We saw that Φ is neither surjective, nor continuous in general.
However, locally it is still one-to-one (as this is based on
calculus with a Jacobian).
Is "global injectivity" saved? Important for the unicity of
equioscillating node systems e.g..

▶ Intertwining Conjecture. It relied on the Homeomorphism
Theorem, but we have given a different proof even for
nonsingular kernels when n = 1, 2, 3. Well, not the full power
of the Homeomorphism Theorem is necessary for the general
proof to go through. It seems that injectivity would as well
suffice.
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Open Questions II
▶ We obtained the unweighted trigonometric Bojanov Theorem

in case of the classical log-trigonometric kernel log sin |πt|.
In fact, for any field J , any rj > 0, and any singular and
monotone kernel K which is not necessarily periodic, but is
subject to (PMc).
Furthermore, also for nonsingular kernels if J is either nil, or
concave itself ("Fenton case") or satisfies some mild
singularity or cusp condition.
So, the case of fully general field J is still missing. One may
try a limiting argument first: take Jk(t) := J(t) + log−(kt).
But the main problem is that a monotone and periodic
function is necessarily a constant.
So we failed to obtain a satisfactory common generalization of
the periodic and interval case.
Most probably the torus case needs to be reworked "directly"
with the more general conditions and methods here.
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Open Questions III

▶ Infinite intervals?
As far as we know, till recently not even the 1978 Bojanov
Theorem was carried through e.g. to Hermite polynomials.
The above results were carried over by Tataiana Nikiforova.
Here to not to loose sense some admissibility condition of
J(t) + rK (t) → −∞(|t| → ∞) is necessary. Assuming that,
the existence of a corresponding "Mhaskar-Rahmanov-Saff
Number" can be proved. Nikiforova’s method is to "transfer
results" from the finite interval case to the real line by a linear
mapping to the “MRS Interval”.

▶ To me it seemed that this way the Homeomorphism Theorem
cannot be transferred. However, very recently (in a paper not
yet published) Tatiana Nikiforova succeeded in proving the
Homeomorphism Theorem on infinite intervals by her method.
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Open Questions IV
▶ Of course, we need not stop at assuming that the kernels are

similar (proportional): we can try to deal with totally different
kernels Kj . In fact, we have already done so regarding the
Homeomorphism Theorem: there the kernels were arbitrary,
(but all singular). The other main ingredient, the above
Strong Perturbation Lemma does not seem to generalize. Yet,
some less strong Perturbation Lemma was proved for T. Does
it suffice – for at least some results – to carry through? Maybe
under some reasonable conditions connecting the Kj and J?

▶ We do have some initial / partial results for general and
nonsingular K1, . . . , Kn, but technicalities are more involved.
In particular, we need to harmonize conditions on the Kj and
J , and use limiting arguments with perturbed systems (e.g.
approximating with systems satisfying the singularity
condition).
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Open Questions V

▶ Our treatment of the weight / field is rather general. Still, it
does not allow w to be unbounded, like e.g. Jacobi weights.
In such a case of course the kernels K should have enough
strong singularity properties to counterweight the growth of J .
That version of Fenton’s Theory still needs to be worked out.
It is not clear what new phenomena may occur here.
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