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Gradient Ricci solitons:

A gradient Ricci soliton is a Riemannian manifold (Mn, g)
together with some (potential) function f : M → R such that

Ric + Hess f = λg , (1)

for some λ ∈ R.
I shrinking: λ > 0, (up to scaling λ = 1

2
),

I steady: λ = 0,

I expanding: λ < 0, (up to scaling λ = −1
2
).

• In general,

Ric +
1

2
LXg = λg .



Motivation: Gradient Ricci solitons

(
Mn, g , f

)
satisfying

Ric + Hess f = λg

I Natural extension of Einstein manifolds.

I Special solutions to the Ricci Flow.

I Model of singularities of the Ricci Flow.

I Critical points of a certain geometric functional
(Perelman’s ν-entropy functional).



The Ricci flow introduced by Hamilton (1982):


∂

∂t
g(t) = −2Ric

g(t)

g(0) = g0

(2)



Ricci solitons are special solutions to the RF

If (Mn, g , f ) is a gradient Ricci soliton, i.e.,

Ric + Hess f = λg ,

then
g(t) = (1− 2λt)Φ∗tg

is a self-similar solution to Hamilton’s Ricci flow

∂

∂t
g(t) = −2Ric

g(t)
.

Here, Φt is the 1-parameter family of diffeomorphisms
generated by ∇f /(1− 2λt).



Sphere through the Ricci flow

R(t) =
1

T − t

... when t → T , one sees that R ↗∞



Model singularities of the Ricci flow

I Consider a solution g(t) to RF on the maximal time
interval [0,T ), where

0 < T <∞ and |Rm|max(t)→∞ as t → T .

In this case, we say that g(t) develops finite time singularities
(as t → T ).



Model singularities of the Ricci flow

• Type I singularities:

lim sup
t→T

(T − t)|Rm|max(t) <∞.

By Sesum, Naber, Enders, Buzano, Topping, Chen,
Wang, Zhang, Hallgren and Bamler.

Theorem
The blow-ups around a Type I singularity point of a Ricci flow
converge to (nontrivial) gradient shrinking Ricci solitons
(GSRS).



Some basic examples of GSRS

I Sn/Γ, or more generally, any positive Einstein manifold
Mn.

I The Gaussian solitons: Rn with the flat metric δij and
potential function f (x) = 1

4
|x |2.

I Finite quotient of cylinders Nk × Rn−k/Γ (k ≥ 2), where
Nk is positive Einstein.



Gradient shrinking Ricci solitons

I B.-L. Chen (2009) showed that it has nonnegative scalar
curvature (R ≥ 0).

I H.-D. Cao and D. Zhou (2010) proved that

1

4

(
r(x)− c

)2
≤ f (x) ≤ 1

4

(
r(x) + c

)2
, (3)

for all r(x) ≥ r0.

• Perelman proved (3) by assuming that |Ric | ≤ C .

• (3) implies that ∫
M
e−f dVg <∞.



What to do? ...

I To classify, or to understand the geometry of Ricci
solitons;

I To construct new examples of Ricci solitons which may
give us new intuition and guidance.



Compact Ricci solitons

I Perelman (2002) proved that every compact Ricci
soliton is a gradient Ricci soliton.

I Hamilton and Ivey (1993) showed that a compact
gradient steady or expanding Ricci soliton is necessarily
an Einstein metric.

∗ Consequently, compact (non-Einstein) Ricci solitons
must be shrinking.

I B.-L. Chen (2009) proved that a gradient shrinking Ricci
soliton has positive scalar curvature (unless it is Ricci
flat).



Classification 2D & 3D Ricci solitons

Theorem (Hamilton, 1988)
Any 2D compact gradient shrinking Ricci soliton is isometric
to a quotient of the sphere S2.

Theorem (Ivey, Perelman)
Any 3D compact gradient shrinking Ricci soliton is isometric
to a quotient of the sphere S3.

I Even the non-compact gradient shrinking Ricci soliton
have been classified in 2 and 3 dimensions.
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Four-dimensional manifolds

I The bundle of 2-forms can be invariantly decomposed as
a direct sum

Λ2 = Λ+ ⊕ Λ−, (4)

where Λ± is the (±1)-eigenspace of Hodge star operator.
This decomposition is conformally invariant.

I On 4-manifolds

Rijkl = Wijkl +
1

2

(
Rikgjl + Rjlgik − Rilgjk − Rjkgil

)
−R

6

(
gjlgik − gilgjk

)
. (5)

I The Weyl tensor W is an endomorphism of Λ2 such that

W = W+ ⊕W−.



Four-dimensional manifolds

R =


W+ + R

12
I R̊ic

R̊ic
∗

W− + R
12
I

 ,

where R̊ic = Ric − R
4
g .

“dimension four seems to represent a sort of Goldilocks zone
for the Einstein equation.” (C. LeBrun)

I If M4 is Kähler, then |W+|2 = R2

24
.



The Weyl tensor W is on target



Classifications involving the Weyl tensor W

By the works of Eminenti-La Nave-Mantegazza,
Ni-Wallach, Cao-Wang-Zhang, Zhang, Petersen-Wylie
& Munteanu-Sesum:

I Locally conformally flat (i.e. W = 0) 4D GSRS =⇒ a
quotient of the sphere S4.

By Chen-Wang:

I Half-conformally flat (i.e. W+ = 0 or W− = 0) 4D GSRS
=⇒ either S4 or CP2.



By H.-D. Cao & Chen, 2013:

I Bach-flat 4D GSRS =⇒ Einstein.

Bij = ∇k∇lWikjl +
1

2
RklWi

k
j
l .

By Munteanu-Sesum and Fernández-López & Garćıa-Ŕıo:

I 4D GSRS with harmonic Weyl tensor (i.e. δW = 02) =⇒
Einstein.

By Wu, Wu & Wylie, 2018:

I The same conclusion holds under the weaker condition of
harmonic self-dual Weyl tensor (i.e. δW+ = 0).

2The fourth-order vanishing condition div4(W ) = 0 was also
considered by Catino, Mastrolia and Monticelli in 2017.



Compact (non-Einstein) examples in 4D:

I (Cao-Koiso, 1991): The first example of (nontrivial)
compact shrinking Ricci soliton: CP2#(−CP2).

I (Wang-Zhu, 2004): The second one: CP2#2(−CP2).

• In the compact case, a nontrivial Kähler-Ricci soliton is
Fano (i.e., the first Chern class C1(M) is positive) and
the Futaki-invariant is nonzero.

• Moreover, by Tian and Zhu (2000), the soliton vector
field is unique up to holomorphic automorphisms of the
underlying complex manifold.



Compact Ricci solitons

Problem (H.-D. Cao, 2006)
It remains to be determined whether a compact non-Einstein
gradient Ricci soliton is necessarily Kähler.

• Unlike the cases of dimensions 2 and 3, the classification
of higher dimension gradient shrinking Ricci soliton is still
incomplete.
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Topology x Geometry (4D Ricci solitons)

I By Poincaré duality, the Euler characteristic and signature
of M4 are given by

χ(M) = 2− 2b1(M) + b2(M)

and
τ(M) = b+(M)− b−(M),

where b1(M) and b2(M) = b+ + b−(M) are the first and
second Betti numbers of M4, respectively.



Topology x Geometry (4D compact Ricci solitons)

I By Derdziński, the first Betti number of a 4D compact
Ricci soliton is b1(M) = 0 and hence,

χ(M) = 2 + b2(M) > 0,

(i.e., Berger’s inequality).

I Moreover, we have the inequality: χ(M) > |τ(M)|.

I By Derdziński, Fernández-López and Garćıa-Ŕıo, and
Wylie, it is known that every compact Ricci soliton has
finite fundamental group (i.e., π1(M) <∞).



On compact 4D-manifolds...

The classical Gauss-Bonnet-Chern formula asserts that

χ(M) =
1

8π2

∫
M

(
|W+|2 + |W−|2 +

R2

24
− 1

2
|R̊ic |2

)
dVg

(6)

and the Hirzebrush’s theorem

τ(M) =
1

12π2

∫
M

(
|W+|2 − |W−|2

)
dVg . (7)



Observe that ...

2χ(M)± 3τ(M) =
1

4π2

∫
M

(
|W±|2 +

R2

24
− 1

2
|R̊ic |2

)
dVg .

Theorem (Hitchin-Thorpe inequality, 1974)
Every 4D compact Einstein manifold M4 satisfies

χ(M) ≥ 3

2
|τ(M)|. (8)

Moreover, equality holds if and only if M4 is finitely covered by
a torus or K3 surface.
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Theorem (LeBrun, 1996)
There are infinitely many compact simply connected smooth
4-manifolds which do not admit Einstein metrics, but
nevertheless satisfy the strict Hitchin-Thorpe inequality.

I Observe that(
2χ(M)± 3τ(M)

)(
CP2#(−CP2)

)
= 8(

2χ(M) + 3τ(M)
)(

CP2#2(−CP2)
)

= 7



Theorem (LeBrun, 1996)
There are infinitely many compact simply connected smooth
4-manifolds which do not admit Einstein metrics, but
nevertheless satisfy the strict Hitchin-Thorpe inequality.

I Observe that(
2χ(M)± 3τ(M)

)(
CP2#(−CP2)

)
= 8(

2χ(M) + 3τ(M)
)(

CP2#2(−CP2)
)

= 7



Returning to the general case, we have

2χ(M)± 3τ(M) =
1

4π2

∫
M

(
|W±|2 +

R2

24
− 1

2
|R̊ic |2

)
dVg .

I On a 4D compact Ricci soliton, we have∫
M

|R̊ic |2dVg =
1

4

∫
M

R2dVg − Vol(M).



I Consequently, on a 4D compact Ricci soliton, one obtains
that

2χ(M)± 3τ(M) =
1

48π2

∫
M

(
24|W±|2 − R2 + 6

)
dVg .

I It is known that |W+|2 = R2

24
for any compact Kähler

manifold with the natural orientation from the complex
structure.

• The strict inequality 2χ(M)± 3τ(M) > 0 holds for any
compact Kähler Ricci soliton.



A conjecture by H.-D. Cao (2006)

“Does the Hitchin-Thorpe inequality hold for compact 4-
dimensional gradient shrinking Ricci solitons?”

I In the last years, some partial answers were obtained by
Fernández-López and Garćıa-Ŕıo, L. Ma, H. Tadano
and others.



Hitchin-Thorpe inequality and Ricci flow

Theorem (Fang-Zhang-Zhang, 2008)
If M4 is a compact manifold which the normalized Ricci flow
exists for all t > 0 with uniformly bounded sectional curvature,
then

χ(M) ≥ 3

2
|τ(M)|.

Theorem (Zhang-Zhang, 2010)
If M4 is a compact manifold with non-positive Yamabe
invariant and admitting a long time solutions of the
normalized Ricci flow with bounded scalar curvature, then

χ(M) ≥ 3

2
|τ(M)|.



Hitchin-Thorpe inequality for Ricci solitons

The Hitchin-Thorpe inequality holds for compact Ricci solitons
under one of the following conditions:

I L. Ma, (2013):
∫
M
R2dVg ≤ 6Vol(M).

I Fernández-López and Garćıa-Ŕıo, (2010):

dia(M , g) ≤ max

{√
2

1
2
− c

,

√
2

C − 1
2

, 2

√
2

C − c

}
,

where C = supx∈M{Ric(v , v); v ∈ TpM , |v | = 1} and
c = infx∈M{Ric(v , v); v ∈ TpM , |v | = 1}.

A similar result was obtained by H. Tadano (2018).



Hitchin-Thorpe inequality for Ricci solitons

Ric + Hess f =
1

2
g .

Theorem (Cheng, R. , Zhou, 2023)
Let (M4, g , f ) be a 4D compact GSRS. Then

8π2χ(M) ≥
∫
M

|W |2dVg +
1

24
Vol(M)(5− e fmax−fmin). (9)

Moreover, equality holds if and only if g is an Einstein metric
(in this case, f is constant).



Hitchin-Thorpe inequality for Ricci solitons

Corollary (Cheng, R. , Zhou, 2023)
Let (M4, g , f ) be a 4D compact GSRS. If fmax − fmin ≤ log 5,
then the Hitchin-Thorpe inequality

χ(M) ≥ 3

2
|τ(M)| (10)

holds on M .

Remark:

I This provides a partial answer to H.-D. Cao’s conjecture;

I Notice that fmax − fmin ≤ log 5 ≈ 1.6;

I on CP2#(−CP2) we have fmax − fmin ≈ 1.06.
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As an application, we deduce the following volume upper
bounds.

Theorem (Cheng, R. , Zhou, 2023)
Let (M4, g , f ) be a 4D compact GSRS. Then the following
assertions hold:

1.
Vol(M)

(
5− e fmax−fmin

)
≤ 384π2.

Equality holds if and only if (M , g) is a sphere S4 with
the radius

√
6.

2.
Vol(M)

(
5− e fmax−fmin

)
≤ Y(M , [g ])2,

where Y(M , [g ]) stands for the Yamabe invariant of
(M4, g). Moreover, equality holds if and only if g is an
Einstein metric.



Sketch of the proof of Theorem 1
I We assume that f is not constant. Otherwise, the result

is already true.

I We consider the sub-level set of the potential function:

D(t) = {x ∈ M ; f (x) < t}.

Proposition
Let (Mn, g , f ) be an n-dimensional complete (not necessarily
compact) GSRS, where f is non-constant. Suppose that h is a
bounded measurable function. Then we have

1. the set of the critical points of f and each level set of f
satisfy Hn({|∇f | = 0}) = 0 and Hn({f = c}) = 0,
respectively.

2. F (t) :=
∫
D(t)

hdVg is absolutely continuous and

F ′(t) =
∫
f=t

g
|∇f | a.e.



Sketch of the proof of Theorem 1

I Let a = fmax and b = fmin the maximum and minimum
values of f on M4, respectively. We consider the set The
one obtains that

∫
D(s)

〈∇R , ∇f 〉dVg =

∫ s

a

∫
D(s)

(
R + 〈∇R ,∇f 〉

−2|Ric |2
)
dVgdt.



Sketch of the proof of Theorem 1

I Define the function φ(s) and ψ(s) by

φ(s) =

∫ s

a

∫
D(t)

〈∇R ,∇f 〉dVgdt

and

ψ(s) =

∫ s

a

∫
D(t)

(
R − 2|Ric |2

)
dVgdt.

I Of which, we have

φ′(s) = φ(s) + ψ(s).



Sketch of the proof of Theorem 1
I Since φ(a) = 0, one obtains that

φ′(s) = es
∫ s

a

ψ′(t)e−tdt.

I Consequently, we arrive at

φ′(b) ≤ eb
∫ b

a

∫
D(t)

(
1

2
− 1

2
(R − 1)2

)
dVge

−tdt

≤ 1

2
Vol(M)

(
ea−b − 1

)
.

I Then, we obtain the asserted result

4π2 (2χ(M)± 3τ(M)) ≥ 2

∫
M

|W±|2dVg

1

24
Vol(M)

(
5− e fmax−fmin

)
.
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