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In the work �On analytical methods in probability theory�

(1931), A. N. Kolmogorov, starting from the relations called

Kolmogorov�Chapman equations, derived for transition probabili-

ties of inhomogeneous stochastically de�ned systems, or, as is

now commonly said, for inhomogeneous Markov random processes

(in an expanded meaning),

reverse and direct

equations in the following three cases:

(A) systems with a �nite number of states;

(B) systems with countable number of states;

(C) di�usion-type systems with a continuous set of states.
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The report, which is largely of a review nature, considers the

cases (A), (B) and the purely jump case for a Markov process

with a Borel state space.

3



In �Analytical methods� direct and inverse equations were derived

under the assumption of di�erentiability of transition probabilities

with respect to temporary variables.

Later, A. N. Kolmogorov especially emphasized that the question

of di�erentiability is far from simple: this property of transition

probabilities signi�cantly depends on the behavior of the paths of

the system under consideration, for example, on such properties

as �explosiveness�, etc. .
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In the case of (A) (�nite number of states), W. Doeblin showed

that the di�erentiability of transition functions follows from the

(constantly used) assumption of stochastic continuity of the

Markov process under consideration. Thus, in the case of a �nite

set of states, the question of the validity of inverse and direct

equations was completely resolved.

Case (B) (countable case) is much more complicated. In the

article �On the question of di�erentiability of transition probabilities...�

(1951) A. N. Kolmogorov noted the arising here features, the

study of which contributed to the development of many important

concepts, such as, as a strictly Markov property.

We do not touch here on the case (C), which is also actively

studied, especially in the framework of Ito's stochastic di�erential

equations for di�usion processes.
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In 1940, W. Feller considered a generalization of the cases (A)

and (B): he studied the question of inverse and direct equations

for (purely) jump Markov processes with continuous time taking

values in Polish spaces .

In a series of our works devoted to direct and inverse Kolmogorov

equations for general (purely) jump Markov processes and their

applications in optimal control, these equations are considered

under weaker assumptions than those made by W. Feller.
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The report will present results on inverse and direct equations

in the cases of (A) and (B); we will also present, following our

works mentioned above, very general conditions for the validity of

inverse and direct equations for (purely) jump Markov processes

with values in standard Borel space.
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2. Case (A) (�nite set of states)

Let a homogeneous Markov process X = (Xt)t≥0 with a �nite

set of states N = {1,2, . . . , n}, whose paths are continuous on

the right for all t > 0 and are piecewise constant (the so-called

pure case), be given on the probability space (Ω,F ,P).
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2.1. Consider transition probabilities

pij(t) = P(Xt = j |X0 = i), ãäå i, j ∈ N , t ≥ 0. (1)

They have the following properties:

pij(t) ≥ 0, pij(0) = δij =

1, i = j,

0, i 6= j;
(2)

∑
j∈N

pij(t) = 1 for all i ∈ N ; (3)

pij(t+ s) =
∑
k∈N

pik(t)pkj(s), t, s ≥ 0. (4)

The Markov (semigroup) property (4) is obviously a variant of

the Kolmogorov�Chapman equation.
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Everywhere below we assume that the process X = (Xt)t≥0 is

stochastically continuous, i.e. for any ε > 0

P(|Xt+h −Xt|> ε)→ 0, t ≥ 0, (5)

when h→ 0 (for t = 0 we assume here and below that h ↓ 0).

Condition (5) is equivalent to the fact that

lim
t↓0

pij(t) = δij, i, j ∈ N . (6)

The following results can be considered well known.
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Proposition 1. (a) There exist �nite limits

qij = lim
h↓0

pij(h)− δij
h

, (7)

in other words, there exist �nite limits

qij = lim
h↓0

pij(h)

h
(≥ 0) for i 6= j, (8)

qii = lim
h↓0

pii(h)− 1

h
(≤ 0) for all i ∈ N . (9)

Moreover, for all i ∈ N∑
j 6=i

qij = −qii, i. e.
∑
j∈N

qij = 0.

(b) For all i, j ∈ N there exist derivatives dpij(t)/dt.
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(ñ) Transition probabilities pij(t) satisfy (with the initial condition
pij(0) = δij) direct equation

dpij(t)

dt
=

∑
k∈N

pik(t)qkj, (10)

i. e. (with qi = −qii, i ∈ N ) the equation

dpij(t)

dt
= −pij(t)qj +

∑
k 6=j

pik(t)qkj, (11)

and inverse equation

dpij(t)

dt
=

∑
k∈N

qikpkj(t), (12)

i. e. the equation

dpij(t)

dt
= −qipij(t) +

∑
k 6=j

qikpkj(t). (13)
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Note that (under the assumption of di�erentiability pij(t)) the
equations (10), (12) immediately follow from the Markov property

(4), i. e. from the Kolmogorov�Chapman equation.

Indeed, to obtain a direct equation (10), we must use the fact

that

pij(t+ h)− pij(t)
h

=
∑
k∈N

pik(t)
pkj(h)− δkj

h
. (14)

And to obtain the inverse equation (12) one should use the fact

that

pij(t+ h)− pij(t)
h

=
∑
k∈N

pik(h)− δik
h

pkj(t). (15)

From the existence of limits (7) and (9) and �niteness of the

number of states, we obtain statements about the existence and

�niteness of the derivatives dpij(t)/dt.
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In matrix form, the equations (10), (12) can be written as

follows:

P ′(t) = P (t)Q and P ′(t) = QP (t),

where P (t) = ‖pij(t)‖, Q = ‖qij‖.
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2.2.The local characteristics qij, i, j ∈ N can be given a useful

interpretation if we use the concept of an embedded chain. This

is the name given to a Markov chain Z = (Zt)t≥0, where Z0 = X0

and Zn = Xτn, n ≥ 1, and τn is the moment of the nth jump of

the process X = (Xt)t≥0.

Then

P(τ1 > t |X0 = i) = e−qit (16)

and, due to the homogeneity of the process X,

P(τn − τn−1 > t |Xτn−1 = i) = e−qit (17)

for any n ≥ 2.
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To prove (16), remark that

P(τ1 > t |X0 = i) = lim
n→∞P(Xtnk = i, k = 0,1, . . . , n |X0 = i),

where 0 = tn0 < tn1 < · · · < tnn = t such that

max1≤k≤n|tnk − tn(k−1)|→ 0 as n→∞.Then

P(τ1 > t |X0 = i) = lim
n→∞

n∏
k=1

pii(tnk − tn(k−1))

= exp
{

lim
n→∞

n∑
k=1

ln[pii(tnk − tn(k−1))]
}

= e−qit,

since for large n

ln[pii(tnk − tn(k−1))] ∼ pii(tnk − tn(k−1))

∼ qii · (tnk − tn(k−1)) = −qi · (tnk − tn(k−1)),

which leads to the formula(16).
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It also can be shown that for j 6= i

P(Xτ1 = j |X0 = i) =
qij

qi
(18)

and, again due to homogeneity, for n ≥ 2

P(Xτn = j |Xτn−1 = i) =
qij

qi
, i 6= j. (19)
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2.3. Until now, we assumed that a homogeneous Markov chain

X = (Xt)t≥0 with continuous time is de�ned on some probability

space (Ω,F ,P). Based on the transition probabilities pij(t) =

P(Xt = j |X0 = i), local characteristics qij, i, j ∈ N = {1,2, . . . , n}
were calculated.

But one can reason, in a certain sense, in the opposite direction,

namely, consider given �nite quantities qij, i, j ∈ N , such that

qij ≥ 0 for i 6= j and qii ≤ 0, additionally assuming that
∑
j 6=i qij =

−qii for all i ∈ N .

Then, using these characteristics, it is possible to construct,

guided by the formulas (16)�(19), a corresponding embedded

Markov chain, the probability distribution of which is such that

its transition probabilities satisfy the direct and inverse equations

(10) and (12).
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2.4.Above we considered the case of a homogeneous Markov

process X = (Xt)t≥0. If this process is inhomogeneous, then its

transition probabilities

pij(s, t) = P(Xt = j |Xs = i), s ≤ t,

will already depend on two variables s and t. Then inverse

equations are equations depending on s, and direct equations are

equations depending on t.

In order for these equations to hold, certain assumptions must

be made.
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We will assume that

pij(s, t) =

1 + qii(t)(t− s) + o(t− s), i = j,

qij(t)(t− s) + o(t− s), i 6= j,
(20)

and the functions qij(t) are continuous in t for all i, j ∈ N .

These conditions are su�cient for the following direct and inverse

equations to take place:

∂pij(s, t)

∂t
= −pij(s, t)qj(t) +

∑
k 6=j

pik(s, t)qkj(t), (21)

∂pij(s, t)

∂s
= qi(s)pij(s, t)−

∑
k 6=j

qik(s)pkj(s, t), (22)

where qj(t) = −qjj(t).
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Under the stated conditions, the formulas (21) and (22) are

derived by considering the increments

1

h
[pij(s, t+ h)− pij(s, t)] è

1

h
[pij(s+ h, t)− pij(s, t)]

quantities (14) and (15)), to which the Kolmogorov�Chapman

equation is applied, and then the passage to the limit is made as

h → 0. The resulting (partial) derivatives are right derivatives,

which are continuous and therefore coincide with the derivatives

∂pij(s, t)/∂t and ∂pij(s, t)/∂s.
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3. Case (B) (countable set of states)

The case of a Markov process X = (Xt)t≥0 with a countable

set of states, as already noted, turned out to be more complex,

and this is due to the fact that e�ects arise here that are absent

in the case of a �nite set of states (case (A)). Such e�ects

include, for example, the appearance of instantaneous states

and the occurrence of �explosions� at a random �nite moment

in time. As a consequence, situations are possible when inverse

equations exist, but direct ones do not.

Let us present the main results here, starting with a homogeneous

(stochastically continuous) process.
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Proposition 2. (a) There exist the limits

qij = lim
h↓0

pij(h)− δij
h

, (23)

where pij(h) = P(Xh = j |X0 = i); moreover, if i 6= j, then these

limits are �nite. However, there are possible cases when qii = −∞
for some (and even all) i ∈ N = {1,2, . . . }.

There is always inequality∑
j 6=i

qij ≤ −qii, (24)

and, even for �nite qii, cases are possible when∑
j 6=i

qij < −qii. (25)
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(b)If all states i ∈ N are non-instantaneous (i.e. qi = −qii <
∞), then for the existence of derivatives dpij(t)/dt, i, j ∈ N,

and execution of the inverse system

dpij(t)

dt
=

∑
k∈N

qikpkj(t), (26)

or

dpij(t)

dt
= −qipij(t) +

∑
k 6=j

qikpkj(t), (27)

it is necessary and su�cient that all states i ∈ N be regular, i.e.

that the following equalities hold:∑
j 6=i

qij = −qii ( = qi <∞). (28)

24



(ñ)Let all states i ∈ N be non-instantaneous and regular, i. e.

qi <∞ and
∑
j 6=i qij = qi, i ∈ N. There are examples when direct

equations

dpij(t)

dt
=

∑
k∈N

pik(t)qkj, or
dpij(t)

dt
= −pij(t)qj +

∑
k 6=j

pik(t)qkj,

do not hold. If, however, for a given i∗ and all t > 0∑
k∈N

pi∗k(t)qkk > −∞, (29)

then for i∗ and all j ∈ N the following direct equations are valid:

dpi∗j(t)

dt
=

∑
k∈N

pi∗k(t)qkj, or
dpi∗j(t)

dt
= −pi∗j(t)qj+

∑
k 6=j

pi∗k(t)qkj.
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Generally speaking, it does not follow from anywhere that, say, a

system of inverse equations has a unique, and also probabilistic,

solution. We therefore investigate the question of the uniqueness

of the solution f = (fij(t))t≥0 of the (inverse) system

dfij(t)

dt
=

∑
k∈N

qikfkj(t), fij(0) = δij, (30)

where qij ≥ 0 if i 6= j, qii ≤ 0 and
∑
k∈N qik = 0 for each i ∈ N.

We will also assume that all quantities qij are �nite.
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Remark 1. The results presented above for homogeneous jump

Markov processes with a countable set of states are a special case

of the results for nonhomogeneous jump Markov processes with

a Borel set of states. The corresponding more general results are

presented in Section 4: for inverse equations in the theorem 1,

and for direct equations in the theorem 2.
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The system (30) can be written in the form

dfij(t)

dt
+ qifij(t) =

∑
k 6=i

qikfkj(t), fij(0) = δij, (31)

which, in turn, is rewritten as follows:

d

ds
[fij(s)e

qis] = eqis
∑
k 6=i

qikfkj(s), fij(0) = δij.

After integration over s in the limits from 0 to t, we obtain that

di�erential equations (31) are equivalent to integral equations

fij(t) = δije
−qit +

∫ t
0
e−qi(t−s)

∑
k 6=i

qikfkj(s) ds. (32)
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To �nd the solution f = (fij(t))t≥0 of this equation, the method

of successive approximations can be used. According to this

method we put

f
(0)
ij (t) = δije

−qit,

f
(n)
ij (t) = δije

−qit +
∫ t

0
e−qi(t−s)

∑
k 6=i

qikf
(n−1)
kj (s) ds, n ≥ 1.

(33)

Then, since 0 ≤ f
(0)
ij (t) ≤ f

(1)
ij (t) ≤ · · ·, we see that there is a

limit

f̄ij(t) = lim
n→∞ f

(n)
ij (t). (34)
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Moreover, for each n ≥ 0 and any i ∈ N∑
j

f
(n)
ij (t) ≤ 1. (35)

Indeed, let g
(n)
i (t) =

∑
j f

(n)
ij (t). Then it is clear that

g
(0)
i (t) =

∑
j

f
(0)
ij (t) = e−qit ≤ 1,

g
(n)
i (t) =

∑
j

f
(n)
ij (t) = e−qit +

∫ t
0
e−qi(t−s)

∑
k 6=i

qikg
(n−1)
k (s) ds.

Therefore, if g
(n−1)
i (t) ≤ 1, then, since it is assumed that

∑
k 6=i qik =

−qii, we have

g
(n)
i (t) ≤ e−qit+

∫ t
0
e−qi(t−s)

∑
k 6=i

qik ds = e−qit+qi

∫ t
0
e−qi(t−s) ds = 1.
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Hence, since g
(0)
i (t) ≤ 1, we obtain the required inequality (35),

and due to (34) we �nd that for each i ∈ N the following

inequality holds: ∑
j

f̄ij(t) ≤ 1. (36)

The solution f̄ij(t) found in this way is the smallest among all

other non-negative solutions f̃ij(t) of the integral equation (31).

Indeed, from (31) it is clear that f̃ij(t) ≥ δije
−qit = f

(0)
ij (t) ,

and by induction it is easy to establish that f̃ij(t) ≥ f
(n)
ij (t), and

therefore f̃ij(t) ≥ f̄ij(t).
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Let us now assume that the found solution f̄ij(t) is probabilistic,

i.e.
∑
j f̄ij(t) = 1 for all i ∈ N. Then it is the unique probabilistic

solution of the equation (32).

Indeed, let P denote the class of all probabilistic solutions of the

equation (32), and let f̃ij(t) be another solution from P. Then∑
j

[f̃ij(t)− f̄ij(t)] = 0.

But f̃ij(t) ≥ f̄ij(t). Therefore, this solution f̃ij(t) coincides with

f̄ij(t). Thus, the class P consists of only one solution f̄ij(t).

32



4. General pure jump Markov processes with piecewise

constant, right continuous paths

As already noted, the transition from a countable set of states

(case (B)) to the more general case of phase space was �rst

made by W. Feller in 1940.

Further, following our works, we consider this general case under

weaker restrictions on the so-called Q-functions, which are natural

analogues of probability densities of exiting states (values qi,

i ∈ N) and probability densities of transition (values qij, i 6= j).
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We will now assume that the time interval on which Markov

systems evolve is the set [T0, T1), where 0 ≤ T0 < T1 ≤ ∞.

As a phase space we will consider some standard Borel space

(X,B(X)), de�ned, as is known, by the fact that X is a topological

space with a metrizable topology transforming X into a Polish

(i.e., complete separable metric) space, and B(X) is the sigma-

algebra generated by open sets.
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Let on the �ltered probability space

(Ω,F , (Ft),P),

a random Markov process X = (Xt), t ∈ [T0, T1), with phase

space (X,B(X)), be de�ned:

P(Xt ∈ B | Fs) = P(Xt ∈ B |Xs) (P-ï. í.) (37)

for all B ∈ B(X), T0 ≤ s ≤ t < T1.

According to the results of S. E. Kuznetsov (TVP, 1980), for

the standard Borel space (X,B(X)) there is a (unique) transition

function P (s, x; t, B) such that

P(Xt ∈ B |Xs) = P (s,X; t, B) (P-ï. í.). (38)
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Recall that the function P (s, x; t, B), where s ≤ t, x ∈ X, B ∈
B(X), is called bluetransition function if (i) for all s ≤ t, x ∈ X

the function P (s, x; t, ·) is a measure on (X,B(X)) and

0 ≤ P (s, x; t, ·) ≤ 1;

(ii) for all B ∈ B(X) the function P (s, x; t, B) is Borel in s, x, t;

(iii) the function P (s, x; t, B) satis�es the Kolmogorov�Chapman

equation

P (s, x; t, B) =
∫
X
P (u, y; t, B)P (s, x;u, dy), (39)

where s < u < t.

In the case when P (u, y; t,X) = 1, the transition function is called

probabilistic.
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So, in the case of a standard Borel space, each Markov process

is associated with a probabilistic transition function. In a certain

sense, the opposite result is also true. Namely, from such a

function and a given probability measure γ = γ(dx), x ∈ X,

one can construct a probability space (Ω,F ,P) and a probability

process X = (Xt), t ∈ [T0, T1) on it, for which P(XT0
∈ dx) =

γ(dx) and the transition probabilities are originally speci�ed ones.

This result follows from Kolmogorov's general results on the

extension of a measure and the construction of the corresponding

process in a coordinate manner (generally speaking, with �bad�

paths).
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Let us now turn to the already mentioned Q-functions.

De�nition 1. The real function q = q(t, x;B), where t ∈ [T0, T1),
x ∈ X, B ∈ B(X), is called Q-function if the following two

conditions are ful�lled:

(a) for �xed t, x this is a signed measure on (X,B(X)) such that

q(t, x;X) ≤ 0 and

0 ≤ q(t, x;B \ {x}) <∞ for all B ∈ B(X); (40)

(b) for all B ∈ B(X) the function q(t, x;B) is measurable in t, x.

It is clear that in the case X = N

q(t, i; {j}) = qij(t), q(t, i; {i}) = qii(t) = −qi(t).
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Let us put

q(t, x) = −q(t, x; {x}) (41)

and

q(x) = sup
t∈[T0,T1)

q(t, x). (42)

Let us formulate a number of assumptions regarding the Q-

function under which direct and inverse equations are considered.
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Condition I (W. Feller). For all n ≥ 1 there exist Borel subsets

Bn ∈ B(X) such that Bn ⊆ Bn+1, Bn ↑ X and supx∈Bn q(x) ≤ n.

Condition II (W. Feller). For each x ∈ X the value of q(x) is

�nite: q(x) <∞.

Condition III (local boundedness). For each s ∈ (T0, T1) and all

x ∈ X the inequality supt∈(T0,s)
q(t, x) <∞ is true.

Condition IV (local L1-boundedness). For each s ∈ (T0, T1)

and all x ∈ X we have
∫ s
T0
q(t, x) dt <∞.

Conditions I and II are equivalent, and, moreover,

I⇐⇒ II =⇒ III =⇒ IV. (43)
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In the case when the phase space X � is a discrete set N, we

proceeded from the fact that a Markov process has already been

de�ned on some probability space; its transition probabilities are

pij(t) in the homogeneous case and pij(s, t) in the inhomogeneous

case.

From these transition probabilities, the Q-functions qij (in the

homogeneous case) and qij(t) (in the inhomogeneous case) were

determined. In applied problems, as a rule, these local characteristics qij
or qij(t) are �rst speci�ed, and then the transition probabilities

are found from direct or inverse equations.
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Note that in this case the Markov process itself, in its usual

understanding, is not de�ned, and its Markov property is realized

in the Kolmogorov-Chapman equation for transition functions.

Now, when considering the general case of jump Markov processes,

it is appropriate to talk about how the corresponding Markov

process can be constructed from Q-functions, and then, of course,

about how the corresponding direct and inverse equations look

for this process.
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Following J. Jacod, we �rst introduce the space Ω, consisting of

points

ω = ((t0, x0), (t1, x1), . . . ), (44)

de�ned as follows: t0 = T0, x0 ∈ X; if tn < T1, then tn+1 > tn

è xn ∈ X, and if tn = T1,then tn+1 = T1 è xn = x∞, where
x∞ is an auxiliary state not belonging to X. We will also denote

t∞(ω) = limn tn(ω). It is obvious, that Ω a measurable subset

in ([T0, T1]×X′)∞, where X′ = X∪{x∞}. For such de�ned points

ω ∈ Ω we can construct an integer random measure

µ(ω; dt, dx) =
∑
n≥1

I(tn < T1) E(tn,xn)(dt, dx), (45)

where tn = tn(ω), xn = xn(ω) è Ea is the Dirac measure in the

point a.
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If on the space (Ω,F) where F is the sigma-algebra of measurable

subsets a probability measure P is already given, then it is possible

to construct a random measure

ν(ω; dt, dx) =
∑
n≥1

I(t ≤ tn+1)Gn(ω; dt, dx)

Gn(ω; [t, T1]×X)
, (46)

where

Gn(ω; dt, dx) = P(tn+1(ω) ∈ dt, xn+1(ω) ∈ dx | (t0, x0), . . . , (tn, xn))

(47)

and

Gn(ω; [t, T1]×X) = P(tn+1(ω) ≥ t | (t0, x0), . . . , (tn, xn)) (48)

(all probabilities on the right-hand sides are regular versions of

the corresponding conditional probabilities).
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This measure turns out to be predictable and such that for each

set B ∈ B(X) the process

(µ(ω; (0, t ∧ tn]×B)− ν(ω; (0, t ∧ tn]×B))t≥0 (49)

for each n is (with respect to the measure P) a uniformly integrable

martingale.
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f the Q-function is given, then the measure ν can be constructed

using the formula

ν(ω; [T0, t]×B) =
∫ t
T0

∑
n≥0

I(tn < s ≤ tn+1)q(s, x,B\{xn}) ds. (50)

This measure is predictable, and then, according to the paper

of J. Jacod (1975), on the space Ω described above with the

corresponding sigma-algebra F it is possible to de�ne such a

measure P, that property (49) is satis�ed, and the process X =

(Xt), t ∈ [T0, T1), where

Xt(ω) =
∑
n≥0

I(tn(ω) ≤ t < tn+1(ω))xn(ω) + I(t∞(ω) ≤ t)x∞(ω)

(51)

will be a (purely) piecewise constant Markov process with a

predetermined Q-function.
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4.6 Following our works, we describe the results on inverse

equations for the transition function P (s, x; t, B) under a given

Q-function. (Direct equations will be discussed later.)

By analogy with paragraph 3, let us put

P
(0)(u, x; t, B) = I(x ∈ B) exp

{
−
∫ t
u
q(x, s) ds

}
(52)

and

P
(n)(u, x; t, B) =

∫ t
u

[∫
X

exp
{
−
∫ w
u
q(x, θ) dθ

}
q(x,w; dy \ {x})

]
× P (n−1)(w, y; t, B) dw. (53)

(Compare with formulas (33) in the case when the phase space

is N.)
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Let

P (u, x; t, B) =
∞∑
n=0

P
(n)(u, x; t, B). (54)

In the works of Feller and ours it was shown that the function

P (under condition IV) is a transition function such that 0 ≤
P (u, x; t, B) ≤ 1, and at the same time satis�es the Kolmogorov�

Chapman equation.

It is also important that the process X = (Xt), t ∈ [T0, T1), will be

a jump Markov process whose transition function is the function

P (u, x; t, B) .
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To solve the question of what the inverse equation is for this

transition function, we proceed as follows.

Let us introduce a family P of nonnegative transition functions

P (u, x; t, B) de�ned for all t ∈ [T0, T1), u ∈ [T0, t), x ∈ X, B ∈ B(X)

and measurable by (u, x) ∈ [T0, t)×X for all t ∈ [T0, T1). It is clear

that the transition function P constructed above belongs to P.
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Òåîðåìà 1. Let condition IV be satis�ed. Then the function P

is minimal among those functions P from P which for all t ∈
[T0, T1), x ∈ X, B ∈ B(X) have the following properties:

(i) limu→t− P (u, x; t, B) = I(x ∈ B);

(ii) P is absolutely continuous with respect to u ∈ [T0, t);

(iii) P satis�es the inverse equation

∂

∂u
P (u, x; t, B) = q(x, u)P (u, x; t, B)−

∫
X
q(x, u, dy\{x})P (u, y; t, B)

(55)

for almost all u ∈ [T0, t).

If the transition function P is probabilistic (i.e. P (u, x; t, B) = 1

for all u, x , t from the domain of de�nition of P ), then it is

unique among all those P ∈ P that satisfy the properties (i)�

(iii) and take values in [0,1].
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The case of direct equations is more complicated. This is largely

due to the fact that the paths of the observed process can

�explode� both at a deterministic and at a random moment in

time. In the case of inverse equations, we start from a predetermined

moment T0.

Let us give some de�nitions.
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Let us de�ne P̂, i.e. a family of real-valued functions P̂ (u, x; t, B)

de�ned for all u ∈ [T0, T1), t in[u, T1), x ∈ X, B ∈ B(X) and

which are measures on (X,B(X)) for �xed u, x, t and measurable

by t functions for �xed u, x, B. (Compare with the de�nition of

class P.)

Note that the transition function P introduced by the formula (54)

belongs to P̂.

We will also need the following concept.
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De�nition 2. Let s ∈ [T0, T1). We will say that the set B ∈ B(X)

is (q, s)-bounded if the function q(x, t) is bounded on the set

B × [T0, s).

In the case s = T1 we call the set B ∈ B(X) q-bounded.
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Remarque 2. The de�nition of (q, s)-bounded sets is introduced

because the right-hand side of the direct equation (see further (56))

may turn out to have the form∞−∞. This complication is absent

for inverse equations, since under condition IV the right-hand side

of the inverse equation (55) for almost all u ∈ (T0, s) is either a

real number or equal to −∞.

If q(u, x) <∞ for all x ∈ X and u ∈ (T0, s), then any one-point set

B = {x} is (q, s)-bounded. Since in the case of processes with a

countable set of states, Kolmogorov's equations are written only

for single-point sets, then in this case the complexity mentioned

above is absent.

Thus, the de�nition of (q, s)-bounded sets is essential only for

direct equations in the case of an uncountable set of states.
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Òåîðåìà 2. Let condition III be satis�ed. Then the function P

is minimal among those P from P̂ which for all u ∈ [T0, T1),

s ∈ (u, T1), x ∈ X and all (q, s)-bounded sets B ∈ B(X) have the

following properties:

(i) limt→u+ P (u, x; t, B) = I(x ∈ B);

(ii) P s absolutely continuous with respect to t ∈ [u, s);

(iii) P satis�es the direct equation

∂

∂t
P (u, x; t, B) = −

∫
B
q(y, t)P (u, x; t, dy)+

∫
X
q(y, t, B\{y})P (u, x; t, dy)

(56)

for almost all t ∈ (u, s).

If additionally the transition function P is probabilistic, then it is

unique among those P ∈ P̂ that satisfy the properties (i)�(iii)

and take values in [0,1].
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