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A multivariatre wavelet system generated by functions (/)
I =1,...,r (called wavelet functions), is

{1/1,(;9}:',&/7

where

Y (x) = m2yD(Mix + k), jez ke

M is a d x d integer matrix whose eigenvalues are bigger than 1 in
absolute value (called matrix dilation ) and m = | det M|.
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A multivariatre wavelet system generated by functions (/)
I =1,...,r (called wavelet functions), is

{1/15;9}:',&/7
where

Y (x) = m2yD(Mix + k), jez ke

M is a d x d integer matrix whose eigenvalues are bigger than 1 in
absolute value (called matrix dilation ) and m = | det M|.

We say that a wavelet system {%Z)f/i)}i,k,l has VM?® property
(vanishing moment property of order s) if

Do) =0 Vi ez 0< ||BlL <s, [=1,...,r.
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We discuss approximation properties in Orlicz spaces of
decompositions with respest to

1. wavelet frames/Riesz bases
2. frame-like wavelet systems
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Dual wavelet frames

Let 7 be a Hilbert space. A system {f,}°°,; C # is called a frame
if there exist A, B > 0 such that

AllFII? < Y IKF, fa) 2 < BFIP?

n=1

for all f € H. If only the right-hand inequality is satisfied for all
f € H, then {f,}°°, is called a Bessel system. An important
property of a frame is the following: every f € H can be

decomposed as
o0

f= Z<f7 ’f;>fna

n=1

where {£,}°°, is a dual frame in H.
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Dual wavelet frames

Let 7 be a Hilbert space. A system {f,}°°,; C # is called a frame
if there exist A, B > 0 such that

AllfI? < Y F fa)? < BIIF)1?

n=1

for all f € H. If only the right-hand inequality is satisfied for all
f € H, then {f,}°°, is called a Bessel system. An important
property of a frame is the following: every f € H can be

decomposed as
o0

f= Z<f7 ’f;>fna

n=1

where {£,}°°, is a dual frame in H.

If A= B then the frame is tight. N
A tight frame {f,}7°; coincides with its dual frame {f,}7;.
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If {¢§,i)};7k7/, {%p}i,k,l are dual wavelet frames in Ly(RY)
generated by wavelet functions () () [ =1, ... r, then every
f € L5(R?) can be decomposed as

EDIDP IR Y

i=—o00 ke 79 I=1
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If {¢§,i)};7k7/, {@Z,(/i)}i,k,l are dual wavelet frames in Ly(RY)
generated by wavelet functions () () [ =1, ... r, then every
f € L5(R?) can be decomposed as

EDIPPI Y

i=—o00 ke 79 I=1

Usually wavelet frames are constructed in framework of
multiresolution analysis from dual scaling functions ¢, @. In this
case the wavelet decomposition may be written also in the form

(F, 8-+ K)o~ + k) +ZZZ Py

i=0 ke zd I=1
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For an apropriate pair of scaling functions ¢, ¢ (satiafying some
very special properties), there exists a method, called MEP (matrix

extensial principle), providing a dual wavelet system W’E;?}i,k,/,
{1;,(;9},',&/ and we have

> {F, Bor)pok +Z > Z P = > (F Gk

kezd i=0 kezd I=1 kezd

If both the systems {¢§Z)};7k7/ and {Jfé)};7k7/ are Bessel, than they
form dual wavelet frames.
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For an apropriate pair of scaling functions ¢, ¢ (satiafying some
very special properties), there exists a method, called MEP (matrix

extensial principle), providing a dual wavelet system {1/)%)},-’&,,
{1;,(;9}/,&/ and we have

> {F, Bor)pok +Z > Z P = > (F Gk

kezd i=0 kezd I=1 kezd

If both the systems {¢§;?}i,k,l and {1;,(,1)},-7;(7/ are Bessel, than they
form dual wavelet frames.

The simplest example is the Haar system {9k} « ={{/;ik};,k, that is
generated from the scaling function ¢ = ¢ = xo,1) by MEP. This
system is an orthonormal basis.
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Orlicz spaces

A function 6 : [0, 00] — [0, 400] is called a Young function, if it is
convex and 6(x) = 0 if and only if x = 0.
For a Young function 6, denote

o(F) = /Rd 01 ().

Ly := Lo(RY) := {f measurable onRY : Iy(\f) < oo for some A > 0};
Ep := Ey(R?) := {f measurable on RY : ly(\f) < oo for all A > 0}.

A sequence {f,}, C Ly (C Ey) is said to modular converge to zero

in Ly (in Ep) if lp(Af,) — O for some X (for all \).
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Orlicz spaces

A function 6 : [0, 00] — [0, 400] is called a Young function, if it is
convex and 6(x) = 0 if and only if x = 0.
For a Young function 6, denote

o(F) = /Rd 01 ().

Ly := Lo(RY) := {f measurable onRY : Iy(\f) < oo for some A > 0};
Ey := Ep(RY) := {f measurable on RY : Iy(\f) < oo for all X > 0}.
A sequence {f,}, C Ly (C Ey) is said to modular converge to zero

in Ly (in Ep) if lp(Af,) — O for some X (for all \).

A Young function @ is said to satisfy As-condition if there exists a
constant K > 2 such that

0(2x) < Kf(x), Vx>0.

This condition is necessary and sufficient for Ly = Ep.
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The Young functions 0(x) = xP, 6(x) = xP(|Inx| + 1), p > 1,
0(x) = xPIn“(e+x), p>1, >0, and
0(x) = (1 + x) In(1 + x) — x satisfy Ay-condition.

The Young functions 6(x) = e* — 1, f(x) = e — 1 and
0(x) = e¥ — x — 1 do not satisfy Ap-condition
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The Young functions 0(x) = xP, 6(x) = xP(|Inx| + 1), p > 1,
0(x) = xPIn“(e+x), p>1, >0, and
0(x) = (1 + x)In(1 4+ x) — x satisfy Aj-condition.

The Young functions 6(x) = e* — 1, f(x) = e — 1 and
0(x) = € — x — 1 do not satisfy Ajy-condition
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ZkeZd<f7 Szjijk' d=1 ¢= X[0,1]

Vfely IA>0:

/9 A f— Z(faajk%ojk —)0, j—) o0
kezd
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ZkeZd<f7 Szjijk' d=1 ¢= X[0,1]

Vfely IA>0:

/9 A f—z<f.,@jk>g&jk —>0, j—)OO
kezd

We are interested in the approximation order of wavelet expansion,
i.e. the decay rate of the error lp (A (f — X, cze(F, Pj) k)
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Bardaro, C.; Vinti, G.; Butzer, P. L.; Stens, R. L. Kantorovich-type
generalized sampling series in the setting of Orlicz spaces. Sampl.
Theory Signal Image Process. 6 (2007), no. 1, 29-52

> kezd (> Pi)pik. d =1, & = Xo,1]
Vielyg dX>0:

/9 A f—z<f,¢jk>g0jk —>0, j—)OO
kezd

We are interested in the approximation order of wavelet expansion,
i.e. the decay rate of the error lp (A (f — X, cze(F, Pj) k)

W; denotes the Orlicz-Sobolev space of order s € N, i.e.

W; = {f measurable : D°f € Ly, 0<|B|l1 <s}.
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Let s e N, f € W;. Suppose {wj(';i)}j,k’/r {1;(,9}1-,,(’/ are dual wavelet
frames generated from ¢, & by MEP, {goo;jk, {@ok }« are Bessel systems,
?(0) = ¢(0) =1 and the system {w},ﬁ)}j,h/ has VM? property. If

0 1B, [ (X)), [0 < w(x) Vx € R,

where v is a radial decreasing function such that |- |°v € L1 N L.
Then for any number p > 1 which is less than any eigenvalue of M in
absolute value, there exists A > 0 such that

b | M F =D (F@men | | <Co Y lo(As D°F), (%)
kezd 1Bll1=s

where C does not depend on f and j, i.e., the wavelet expansion has
approximation order s in the sense of modular convergence.

If, moreover, f € Ey and DPf € Ey, ||B|l1 = s, then (*) holds for every
A > 0.
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Let (x) = ¥ — 1 (does not satisfy Ay-condition), d =1, M =2, s =1,
¢ = ¢ =Xpa f(x) =max{0,; —[x[}.

lp(f) < o0, lp(f') < oo = f e W}
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Let (x) = ¥ — 1 (does not satisfy Ay-condition), d =1, M =2, s =1,
¢ = ¢ =Xpa f(x) =max{0,; —[x[}.

lp(f) < o0, lp(f') < oo = f e W}

The wavelet system {9} generated from ¢ by MEP is the Haar basis,
and for every A > 0

od=1_1

~ ~ 1 |2k +1] Kk ok+17
STHE G en(x) = Z (f, @ik pj(x) = 3 o for x € [27, Py ] ,i>1
kez ki1
AF)— X (@) ek (x|
lg | X(F =D (F Bi)eu®) | = / <e kez *1> dx
kez i
3.

2—1_1 H1 (1 \2k+1\)‘ o—1_1 ' k. _1 k
AL —gx— (112 Al £+ L&
= 3 / <e 22T HR T ) D) e S / Moyt Il
k

- j—1
k==2""p, 1]
2

—1> dx

A\ 1A
> > / <e2}+1 X—l)dx2£54




The error estimate (*) for the modular convergence may be
improved as follows

> M

| M F=D (Femen | | <C D bh| =—A DF |,
kez? I8lh=s | 22 [M~]*
i=0
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The error estimate (*) for the modular convergence may be
improved as follows

> M

| M F=D (Femen | | <C D bh| =—A DF |,
keze IBli=s | > [IM~7]|s
i=0

Let 6(x) = e — 1 (does not satisfy As-condition), d =1, M = 2,
S =

3o ;

by | S2—f | = / <e2’2’|/\1f|2 B 1) <28 h(ur)
DRI S
i=0

Thus the approximation order is 2 in this case.
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p
1fllo == inf{7>0: Iy () gl}, fely.
Y

This functional is well defined on Ly, || - ||g, and it is a norm in Ly

(called the Luxemburg norm).

The normed space (Lg, || - ||¢) is a Banach space.
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Let 6 satisfy Ap-condition, s € N, f € W;. Suppose {1/1(,1)}1-7&/, {J}p}j,w
are dual wavelet frames generated from ¢, ¢ by MEP, chk}k, { ok } «
are Bessel systems, p(0) = (0) =1 and the system {1/1 7 }J «,1 has VM?*

property.
If

O 1BC] OGO [P0 ()] < v(x) ¥x € RY,

where v is a radial decreasing function such that | - |°v € L; N Lo,
then

kezd P

where p > 1 is any number that is less than any eigenvalue of M in
absolute value and C does not depend on f and j, i.e., the wavelet
expansion has approximation order s in the sense of convergence in the
Luxemburg norm.
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Dual frame-like wavelet systems

Using the construction of dual wavelet frames by MEP, one has to
overcome substantial difficulty to provide vanishing moments for all
wavelet functions ¢(), () which is a necessary condition for the

systems {w,(ii)}i,k,/: {J%)},’,k,/ to be frames in L2(Rd).
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Dual frame-like wavelet systems

Using the construction of dual wavelet frames by MEP, one has to
overcome substantial difficulty to provide vanishing moments for all
wavelet functions ¢(), () which is a necessary condition for the

systems {w,(ii)}i,k,/: {J%)},’,k,/ to be frames in L2(Rd).

However, engineers often do not take care of this. Providing
vanishing moments only for the functions ¢(), they successfully
apply such "frames” (which are really not frames) for signal
processing. Thus, it makes sense to study a wider class of dual
wavelet systems which preserve the frame-type decompositions.
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Dual frame-like wavelet systems

Using the construction of dual wavelet frames by MEP, one has to
overcome substantial difficulty to provide vanishing moments for all
wavelet functions ¢(), () which is a necessary condition for the

systems {w%)},‘,/ﬂ/, {J%)},’,k,/ to be frames in L2(Rd).

However, engineers often do not take care of this. Providing
vanishing moments only for the functions ¢(), they successfully
apply such "frames” (which are really not frames) for signal
processing. Thus, it makes sense to study a wider class of dual
wavelet systems which preserve the frame-type decompositions.

A method for the construction compactly supported dual wavelet
systems {7/1;:)}j,k,l: {1pj(,i)}j’k7/, where () () are, generally
speaking, tempered distributions and the system {@Zj(/i)}j,k,/ has
VM? property, was developed in
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A compactly supported tempered distribution ¢ is called refinable,
if it satisfies a refinement equation

P(€) = mo(M* )M 1¢),

where mg (called refinable mask=scaling mask) is a trigonometric
polynomial.
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A compactly supported tempered distribution ¢ is called refinable,
if it satisfies a refinement equation

~ w—Loy ~ppx—1
P(&) = mo(M*=E)p(M* 7€),
where mg (called refinable mask=scaling mask) is a trigonometric
polynomial.
The polyphase components of mg are the trigonometric
polynomials pigx defined by

Z 627” Sk, X M X)

where sp,...,5n_1 are digits of l\/l (for instance, the set of digits
can be taken as M[0,1)4 N Z9).
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A compactly supported tempered distribution ¢ is called refinable,
if it satisfies a refinement equation

~ w—Loy ~ppx—1

P(&) = mo(M*=E)p(M* 7€),
where mg (called refinable mask=scaling mask) is a trigonometric
polynomial.
The polyphase components of mg are the trigonometric
polynomials pigx defined by

Z 627” Sk, X M X)

where sp,...,5n_1 are digits of l\/l (for instance, the set of digits
can be taken as M[0,1)4 N Z9).

Starting with two arbitrary trigonometric polynomial m, and my,
we can construct two refinable functions




Dual wavelet systems constructed by MEP

Given scaling masks mg, mg, satisfying mo(0) = mo(0) = 1, find
trigonometric polynomials (called wavelet masks) m;, m,
I=1,...,r, r > m—1, such that the corresponding polyphase

matrices
oo .- JO,m—1 foo ... [o,m—1
M = D : , M= - :
Hro --- Hrm-1 ﬁr,O cee ﬁr,mfl
satisfy o
MM =1,

and define wavelet functions by

—

D0 = m(M M e, J0(E) = A(MEEFM 1),
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1 o _
D" 1ok (0) = 7 >N <f> (—2miM~1s )P

0<y<p

forall 8 € Zi such that |||l1 <s, k=0,...,m—1 and for some
complex numbers A, 7 € Zi, I7llL <'s, Ao =1, and

m—1
D’ (1 -y MOk(f)ﬁOk(f)>

k=0

=0 VB ez, |81 <s.
£=0

Then~there exist associated wavelet functions N
D D 1 =1,... m, such that the wavelet functions {%b(l)}j,k,/

have vanishing moments up to order s, i.e. Dﬁzz(’) = 0 for all
B € Z4 such that ||B|1 < s.
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What happens in L,?

ff,opely, o€ly, 1/p+1/g=1, p>1, then

Z <fa @Jk>§0jk € Lpa
kezd

and if moreover {{/;J(/i)}ﬁh/ has VM?® property and f € W, then

f— S (Faen| < Colflws,

d
keZ p

where p > 1 is any number that is less than any eigenvalue of M in
absolute value and C does not depend on f and j.
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What happens in the Orlicz spaces?

The function 6* given as

0*(t) = igg(st —6(s)), t>0

is called conjugate to the Young function 6.
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What happens in the Orlicz spaces?

The function 6* given as

0*(t) = igg(st —6(s)), t>0

is called conjugate to the Young function 6.

Let € be a Young function and 6* be its conjugate. If f € Ly and
g € Lg*, then

/ gl du < 21 lolgllo--
Rd
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What happens in the Orlicz spaces?

The function 6* given as

0*(t) = igg(st —6(s)), t>0

is called conjugate to the Young function 6.

Let € be a Young function and 6* be its conjugate. If f € Ly and
g € Lg*, then

/ gl du < 21 lolgllo--
Rd

If fop € Ly, © € Ly, then Zkezd<f,g5jk>g0jk € Ly??77?
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What happens in the Orlicz spaces?

The function 6* given as

0*(t) = igg(st —6(s)), t>0

is called conjugate to the Young function 6.

Let € be a Young function and 6* be its conjugate. If f € Ly and
g € Lg*, then

/ gl du < 21 lolgllo--
Rd
If f,p € Ly, 55 € Lg~, then ZkeZd<f7SEjk>(lgjk € Lg???

A Young function 6 is said to satisfy A’-condition if there exist
co, Xo > 0 such that 6(xy) < cof(x)0(y) for all y > 0 and for all
X 2 Xo.

A’-condition implies A-condition
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Let 6(s) = sIn(e+s), (satisfies A’-condition) 6* be conjugate to 6.
| In x|
_ Inx xefo,1/10]
= S Lo+ ?

) {0 otherwise T

Lett > 1, g(s):=st—0(s)=s(t—In(e+s)), g(s*) =supg(s)
s>0

g’'(0) > 0 and g'(s) < 0 whenever In(e +s) > t

= In(e+s*) <t
= 0*(t) =s*(t — In(e + s%)) < (e' — e)(t — In(e + 5¥)) < te*

"o @opax= [ (1) o

1/10 1 [1/10
g/ l\lnx\eé“”xdx:—/ DX o < oo
, 2 2)o  Vx




1 xe[n,n—k%],nzlo,

©=Xp1, f(x)= {'“ "

0 otherwise.

Obviously, ¢, f € Ly

19<Z<f Pok) W /H(Z/f o(t + k)dt go(x+k)) dx
k k &

= 0 f(t)p(t + k)dt o(x + k + n) | dx
o[ o tasternn)

En:e(/f(t)wn ) Ze(/ £+ n) ()dt).

n=10 0

=

S 1 e 1 — 1
= > > =
Z0<In2n/0 ||nt|dt> Z0<n|nn>_znlnn o




Let a Young function 0 satisfy A’-condition j € Z, p and ¢ be
compactly supported functions, ¢ € Ly, p € L. Then for every
fe L9

b | Y (F,@)em | < Copla(F), (1)

kezd

v

Let f,p € Ly, ¢ € Lo be compactly supported refinable functions.

Suppose {T/’ﬂ)}j,k,/' {{/;J(/i)}j,hl are dual wavelet systems generated
from ¢, @ by MEP. Then

r

> (f, Bok) ok +ZZ > L, fLo ) = > L B o

kezd i=0 =1 kezd kezd

¢
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Let 0 satisfy A'-condition, s € N, f € Wj. Suppose ¢ € Ly,
@ € Ly, are refinable compactly supported functions and {1/)}/9 Ykl
{JJ(,? }j k.1 are dual wavelet systems generated from ¢, ¢ by MEP

and such that the system {Qﬁfé)},-’k’/ has VM? property.
Then

F= Y (£, @i < Co?lfllwg,
kezd 0

where p > 1 is any number that is less than any eigenvalue of M in
absolute value and C does not depend on f and j, i.e., the wavelet
expansion has approximation order s in the sense of convergence in
the Luxemburg norm.
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Thank you very much!




