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A multivariatre wavelet system generated by functions ψ(l),
l = 1, . . . , r (called wavelet functions), is

{ψ(l)
ik }i ,k,l ,

where

ψ
(l)
jk (x) := mj/2ψ(l)(M jx + k), j ∈ Z, k ∈ Zd

M is a d × d integer matrix whose eigenvalues are bigger than 1 in
absolute value (called matrix dilation ) and m = | detM|.

We say that a wavelet system {ψ(l)
ik }i ,k,l has VM

s property
(vanishing moment property of order s) if

Dβψ̂(l)(0) = 0 ∀β ∈ Zd : 0 ≤ ‖β‖1 < s, l = 1, . . . , r .
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We discuss approximation properties in Orlicz spaces of
decompositions with respest to

1. wavelet frames/Riesz bases
2. frame-like wavelet systems
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Dual wavelet frames

Let H be a Hilbert space. A system {fn}∞n=1 ⊂ H is called a frame
if there exist A,B > 0 such that

A‖f ‖2 ≤
∞∑
n=1

|〈f , fn〉|2 ≤ B‖f ‖2

for all f ∈ H. If only the right-hand inequality is satis�ed for all
f ∈ H, then {fn}∞n=1 is called a Bessel system. An important
property of a frame is the following: every f ∈ H can be
decomposed as

f =
∞∑
n=1

〈f , f̃n〉fn,

where {f̃n}∞n=1 is a dual frame in H.

If A = B then the frame is tight.
A tight frame {fn}∞n=1 coincides with its dual frame {f̃n}∞n=1.
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If {ψ(l)
ik }i ,k,l , {ψ̃

(l)
ik }i ,k,l are dual wavelet frames in L2(Rd)

generated by wavelet functions ψ(l), ψ̃(l), l = 1, . . . , r , then every
f ∈ L2(Rd) can be decomposed as

f =
∞∑

i=−∞

∑
k∈Zd

r∑
l=1

〈f , ψ̃(l)
ik 〉ψ

(l)
ik .

Usually wavelet frames are constructed in framework of
multiresolution analysis from dual scaling functions ϕ, ϕ̃. In this
case the wavelet decomposition may be written also in the form

〈f , ϕ̃(·+ k)〉ϕ(·+ k) +
∞∑
i=0

∑
k∈Zd

r∑
l=1

〈f , ψ̃(l)
ik 〉ψ

(l)
ik
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For an apropriate pair of scaling functions ϕ, ϕ̃ (satiafying some
very special properties), there exists a method, called MEP (matrix

extensial principle), providing a dual wavelet system {ψ(l)
ik }i ,k,l ,

{ψ̃(l)
ik }i ,k,l and we have

∑
k∈Zd

〈f , ϕ̃0k〉ϕ0k +

j−1∑
i=0

∑
k∈Zd

r∑
l=1

〈f , ψ̃(l)
ik 〉ψ

(l)
ik =

∑
k∈Zd

〈f , ϕ̃jk〉ϕjk

If both the systems {ψ(l)
ik }i ,k,l and {ψ̃

(l)
ik }i ,k,l are Bessel, than they

form dual wavelet frames.

The simplest example is the Haar system {ψik}i ,k ={ψ̃ik}i ,k , that is
generated from the scaling function ϕ = ϕ̃ = χ[0,1] by MEP. This
system is an orthonormal basis.
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Orlicz spaces

A function θ : [0,∞]→ [0,+∞] is called a Young function, if it is
convex and θ(x) = 0 if and only if x = 0.
For a Young function θ, denote

Iθ(f ) :=

∫
Rd

θ(|f (x)|)dx .

Lθ := Lθ(Rd) := {f measurable on Rd : Iθ(λf ) <∞ for some λ > 0};

Eθ := Eθ(Rd) := {f measurable on Rd : Iθ(λf ) <∞ for all λ > 0}.
A sequence {fn}n ⊂ Lθ (⊂ Eθ) is said to modular converge to zero

in Lθ (in Eθ) if Iθ(λfn)→ 0 for some λ (for all λ).

A Young function θ is said to satisfy ∆2-condition if there exists a
constant K > 2 such that

θ(2x) ≤ Kθ(x), ∀x ≥ 0.

This condition is necessary and su�cient for Lθ = Eθ.
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The Young functions θ(x) = xp, θ(x) = xp(| ln x |+ 1), p ≥ 1,
θ(x) = xp lnα(e + x), p ≥ 1, α ≥ 0, and
θ(x) = (1 + x) ln(1 + x)− x satisfy ∆2-condition.

The Young functions θ(x) = ex − 1, θ(x) = ex
2 − 1 and

θ(x) = ex − x − 1 do not satisfy ∆2-condition

Krasnoselskii M.A. and Rutickii YA. B. Convex Functions and
Orlicz Spaces. D� 18. 1961. (Noordho�, Groningen)

Musielak, J. Orlicz Spaces and Modular Spaces. Lecture Notes in
Mathematics, Vol. 1034, Springer-Verlag, Berlin, 1983.

Rao M.M., Ren Z.D. Theory of Orlicz-Spaces. Marcel Dekker, Inc.
New York, Basel and Hong-Kong, 1991.
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Bardaro, C.; Vinti, G.; Butzer, P. L.; Stens, R. L. Kantorovich-type
generalized sampling series in the setting of Orlicz spaces. Sampl.
Theory Signal Image Process. 6 (2007), no. 1, 29-52∑

k∈Zd 〈f , ϕ̃jk〉ϕjk , d = 1, ϕ̃ = χ[0,1]

∀f ∈ Lθ ∃λ > 0 :

Iθ

λ
f −

∑
k∈Zd

〈f , ϕ̃jk〉ϕjk

−→ 0, j →∞

We are interested in the approximation order of wavelet expansion,
i.e. the decay rate of the error Iθ

(
λ
(
f −

∑
k∈Zd 〈f , ϕ̃jk〉ϕjk

))
W s
θ denotes the Orlicz-Sobolev space of order s ∈ N, i.e.

W s
θ = {f measurable : Dβf ∈ Lθ, 0 ≤ ‖β‖1 ≤ s}.
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Theorem

Let s ∈ N, f ∈W s
θ . Suppose {ψ

(l)
jk }j,k,l , {ψ̃

(l)
jk }j,k,l are dual wavelet

frames generated from ϕ, ϕ̃ by MEP, {ϕ0k}k , {ϕ̃0k}k are Bessel systems,

ϕ̂(0) = ̂̃ϕ(0) = 1 and the system {ψ̃(l)
jk }j,k,l has VMs property. If

|ϕ(x)|, |ϕ̃(x)|, |ψ(l)(x)|, |ψ̃(l)(x)| ≤ ν(x) ∀x ∈ Rd ,

where ν is a radial decreasing function such that | · |sν ∈ L1 ∩ L∞.
Then for any number ρ > 1 which is less than any eigenvalue of M in
absolute value, there exists λ > 0 such that

Iθ

λ
f −

∑
k∈Zd

〈f , ϕ̃jk〉ϕjk

 ≤ Cρ−sj
∑
‖β‖1=s

Iθ(λβ Dβf ), (∗)

where C does not depend on f and j , i.e., the wavelet expansion has
approximation order s in the sense of modular convergence.
If, moreover, f ∈ Eθ and Dβf ∈ Eθ, ‖β‖1 = s, then (*) holds for every
λ > 0.
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Example

Let θ(x) = ex − 1 (does not satisfy ∆2-condition), d = 1, M = 2, s = 1,
ϕ = ϕ̃ = χ[0,1], f (x) = max{0, 12 − |x |}.

Iθ(f ) <∞, Iθ(f ′) <∞ ⇒ f ∈W 1
θ .

The wavelet system {ψjk} generated from ϕ by MEP is the Haar basis,
and for every λ > 0

∑
k∈Z
〈f , ϕ̃jk〉ϕjk (x) =

2j−1−1∑
k=−2j−1

〈f , ϕ̃jk〉ϕjk (x) =
1

2
−
|2k + 1|
2j+1

for x ∈
[
k

2j
,
k + 1

2j

]
, j > 1;

Iθ

λ(f −∑
k∈Z
〈f , ϕ̃jk〉ϕjk (x)

) =

∫
[− 1

2
, 1
2
]

(
e
λ|f (x)−

∑
k∈Z
〈f ,ϕ̃jk 〉ϕjk (x)|

− 1

)
dx

=

2j−1−1∑
k=−2j−1

∫
[ k
2j
, k+1

2j
]

e
λ

∥∥∥∥ 1
2
−|x|−

(
1
2
− |2k+1|

2j+1

)∣∣∣∣ − 1

 dx =

2j−1−1∑
k=−2j−1

∫
[0, 1

2j
]

e
λ

∣∣∣∣| k2j + 1
2j+1
|−| k

2j
+x|

∣∣∣∣ − 1

 dx

≥
2j−1−1∑

k=0

∫
[0, 1

2j+1
]

(
e
λ

2j+1
−λx

− 1

)
dx ≥

1

16

λ

2j
.
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The error estimate (*) for the modular convergence may be
improved as follows

Iθ

λ
f −

∑
k∈Zd

〈f , ϕ̃jk〉ϕjk

 ≤ C
∑
‖β‖1=s

Iθ


∞∑
i=j
‖M−i‖s

∞∑
i=0
‖M−i‖s

λs Dβf

 ,

Let θ(x) = ex
2 − 1 (does not satisfy ∆2-condition), d = 1, M = 2,

s = 1.

Iθ


∞∑
i=j

2−i

∞∑
i=0

2−i
λ1f
′

 =

∞∫
−∞

(
e2
−2j |λ1f |2 − 1

)
≤ 2−2j Iθ(λ1f

′)

Thus the approximation order is 2 in this case.
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‖f ‖θ := inf

{
γ > 0 : Iθ

(
f

γ

)
≤ 1

}
, f ∈ Lθ.

This functional is well de�ned on Lθ, ‖ · ‖θ, and it is a norm in Lθ

(called the Luxemburg norm).

The normed space (Lθ, ‖ · ‖θ) is a Banach space.
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Theorem

Let θ satisfy ∆2-condition, s ∈ N, f ∈W s
θ . Suppose {ψ

(l)
jk }j,k,l , {ψ̃

(l)
jk }j,k,l

are dual wavelet frames generated from ϕ, ϕ̃ by MEP, {ϕ0k}k , {ϕ̃0k}k
are Bessel systems, ϕ̂(0) = ̂̃ϕ(0) = 1 and the system {ψ̃(l)

jk }j,k,l has VMs

property.
If

|ϕ(x)|, |ϕ̃(x)|, |ψ(l)(x)|, |ψ̃(l)(x)| ≤ ν(x) ∀x ∈ Rd ,

where ν is a radial decreasing function such that | · |sν ∈ L1 ∩ L∞,
then ∥∥∥∥∥∥f −

∑
k∈Zd

〈f , ϕ̃jk〉ϕjk

∥∥∥∥∥∥
θ

≤ Cρ−sj‖f ‖W s
θ
,

where ρ > 1 is any number that is less than any eigenvalue of M in
absolute value and C does not depend on f and j , i.e., the wavelet
expansion has approximation order s in the sense of convergence in the
Luxemburg norm.

Maria Skopina St. Petersburg State University and Regional Mathematical Center of Southern Federal UniversityWavelet approximation in Orlicz spaces



Dual frame-like wavelet systems

Using the construction of dual wavelet frames by MEP, one has to
overcome substantial di�culty to provide vanishing moments for all
wavelet functions ψ(l), ψ̃(l), which is a necessary condition for the

systems {ψ(l)
ik }i ,k,l , {ψ̃

(l)
ik }i ,k,l to be frames in L2(Rd).

However, engineers often do not take care of this. Providing
vanishing moments only for the functions ψ̃(l), they successfully
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A compactly supported tempered distribution ϕ is called re�nable,
if it satis�es a re�nement equation

ϕ̂(ξ) = m0(M∗−1ξ)ϕ̂(M∗−1ξ),

where m0 (called re�nable mask=scaling mask) is a trigonometric
polynomial.
The polyphase components of m0 are the trigonometric
polynomials µ0k de�ned by

m0(x) =
1√
m

m−1∑
k=0

e2πi(sk ,x)µ0k(M∗x).

where s0, . . . , sm−1 are digits of M (for instance, the set of digits
can be taken as M[0, 1)d ∩ Zd).

Starting with two arbitrary trigonometric polynomial mo and m̃0,
we can construct two re�nable functions

ϕ̂(ξ) :=
∞∏
j=1

m0(M∗−jξ), ̂̃ϕ(ξ) :=
∞∏
j=1

m̃0(M∗−jξ)..
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Dual wavelet systems constructed by MEP

Given scaling masks m0, m̃0, satisfying m0(0) = m̃0(0) = 1, �nd
trigonometric polynomials (called wavelet masks) ml , m̃l ,
l = 1, . . . , r , r ≥ m − 1, such that the corresponding polyphase
matrices

M :=

 µ00 . . . µ0,m−1
...

. . .
...

µr ,0 . . . µr ,m−1

 , M̃ :=

 µ̃00 . . . µ̃0,m−1
...

. . .
...

µ̃r ,0 . . . µ̃r ,m−1


satisfy

MTM̃ = Im,

and de�ne wavelet functions by

ψ̂(l)(ξ) = ml(M
∗−1ξ)ϕ̂(M∗−1ξ),

̂̃
ψ(l)(ξ) = m̃l(M

∗−1ξ)̂̃ϕ(M∗−1ξ).

Maria Skopina St. Petersburg State University and Regional Mathematical Center of Southern Federal UniversityWavelet approximation in Orlicz spaces



If

Dβµ0k(0) =
1√
m

∑
0≤γ≤β

λγ

(
β

γ

)
(−2πiM−1sk)β−γ

for all β ∈ Zd
+ such that ‖β‖1 < s, k = 0, . . . ,m − 1 and for some

complex numbers λγ , γ ∈ Zd
+, ‖γ‖1 < s, λ0 = 1, and

Dβ

(
1−

m−1∑
k=0

µ0k(ξ)µ̃0k(ξ)

)∣∣∣∣∣
ξ=0

= 0 ∀β ∈ Zd
+, ‖β‖1 < s.

Then there exist associated wavelet functions
ψ(l), ψ̃(l), l = 1, . . . ,m, such that the wavelet functions {ψ̃(l)}j ,k,l
have vanishing moments up to order s, i.e. Dβ̂̃ψ(l) = 0 for all
β ∈ Zd

+ such that ‖β‖1 < s.
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What happens in Lp?

If f , ϕ ∈ Lp, ϕ̃ ∈ Lq, 1/p + 1/q = 1, p ≥ 1, then∑
k∈Zd

〈f , ϕ̃jk〉ϕjk ∈ Lp,

and if moreover {ψ̃(l)
jk }j ,k,l has VM

s property and f ∈W s
p , then∥∥∥∥∥∥f −

∑
k∈Zd

〈f , ϕ̃jk〉ϕjk

∥∥∥∥∥∥
p

≤ Cρ−sj‖f ‖W s
p
,

where ρ > 1 is any number that is less than any eigenvalue of M in
absolute value and C does not depend on f and j .
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What happens in the Orlicz spaces?

The function θ∗ given as

θ∗(t) = sup
s≥0

(st − θ(s)), t ≥ 0

is called conjugate to the Young function θ.

Let θ be a Young function and θ∗ be its conjugate. If f ∈ Lθ and
g ∈ Lθ∗ , then ∫

Rd

|fg | dµ ≤ 2‖f ‖θ‖g‖θ∗ .

If f , ϕ ∈ Lθ, ϕ̃ ∈ Lθ∗ , then
∑

k∈Zd 〈f , ϕ̃jk〉ϕjk ∈ Lθ???

A Young function θ is said to satisfy ∆′-condition if there exist
c0, x0 > 0 such that θ(xy) ≤ c0θ(x)θ(y) for all y ≥ 0 and for all
x ≥ x0.
∆′-condition implies ∆2-condition
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Example

Let θ(s) = s ln(e + s), (satis�es ∆′-condition) θ∗ be conjugate to θ.

ϕ̃(x) =

{
| ln x |
2 x ∈ [0, 1/10]

0 otherwise
ϕ̃ ∈ Lθ∗ ?

Let t > 1, g(s) := st − θ(s) = s(t − ln(e + s)), g(s∗) = sup
s≥0

g(s)

g ′(0) > 0 and g ′(s) < 0 whenever ln(e + s) > t

⇒ ln(e + s∗) ≤ t
⇒ θ∗(t) = s∗(t − ln(e + s∗)) ≤ (et − e)(t − ln(e + s∗)) ≤ tet∫ ∞

−∞
θ∗ (ϕ̃(x)) dx =

∫ 1/10

0
θ∗
(
| ln(x)|

2

)
dx

≤
∫ 1/10

0

1

2
| ln x |e

1
2
| ln x |dx = −1

2

∫ 1/10

0

ln x√
x
dx <∞.
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ϕ = χ[0,1], f (x) =

{
1

ln2 n
x ∈ [n, n + 1

n ], n ≥ 10,

0 otherwise.

Obviously, ϕ, f ∈ Lθ

Iθ

(∑
k

〈f , ϕ̃0k〉ϕ0k

)
=

∫
R

θ

∑
k

∫
R

f (t)ϕ̃(t + k)dt ϕ(x + k)

 dx

=
∑
n

1∫
0

θ

∑
k

∫
R

f (t)ϕ̃(t + k)dt ϕ(x + k + n)

 dx

=
∑
n

θ

∫
R

f (t)ϕ̃(t − n)dt

 =
∞∑

n=10

θ

 1∫
0

f (t + n)ϕ̃(t)dt

 .

=
∞∑

n=10

θ

(
1

ln2 n

∫ 1/n

0
| ln t|dt

)
≥

∞∑
n=10

θ

(
1

n ln n

)
≥

∞∑
n=10

1

n ln n
=∞
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Lemma

Let a Young function θ satisfy ∆′-condition j ∈ Z, ϕ and ϕ̃ be

compactly supported functions, ϕ ∈ Lθ, ϕ̃ ∈ L∞. Then for every

f ∈ Lθ

Iθ

∑
k∈Zd

〈f , ϕ̃jk〉ϕjk

 ≤ Cϕ,ϕ̃Iθ(f ), (1)

Lemma

Let f , ϕ ∈ Lθ, ϕ̃ ∈ L∞ be compactly supported re�nable functions.

Suppose {ψ(l)
jk }j ,k,l , {ψ̃

(l)
jk }j ,k,l are dual wavelet systems generated

from ϕ, ϕ̃ by MEP. Then

∑
k∈Zd

〈f , ϕ̃0k〉ϕ0k +

j−1∑
i=0

r∑
l=1

∑
k∈Zd

〈f , ψ̃(l)
ik 〉ψ

(l)
ik =

∑
k∈Zd

〈f , ϕ̃jk〉ϕjk
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Theorem

Let θ satisfy ∆′-condition, s ∈ N, f ∈W s
θ . Suppose ϕ ∈ Lθ,

ϕ̃ ∈ L∞ are re�nable compactly supported functions and {ψ(l)
jk }j ,k,l ,

{ψ̃(l)
jk }j ,k,l are dual wavelet systems generated from ϕ, ϕ̃ by MEP

and such that the system {ψ(l)
ik }i ,k,l has VM

s property.

Then ∥∥∥∥∥∥f −
∑
k∈Zd

〈f , ϕ̃jk〉ϕjk

∥∥∥∥∥∥
θ

≤ Cρ−sj‖f ‖W s
θ
,

where ρ > 1 is any number that is less than any eigenvalue of M in

absolute value and C does not depend on f and j , i.e., the wavelet

expansion has approximation order s in the sense of convergence in

the Luxemburg norm.
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Thank you very much!
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