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Generalized solutions of boundary value problems for differential–difference
equations on a finite interval were first considered in [1], [2]. It was shown
that the smoothness of generalized solutions can be violated at interior
points of the interval even for an infinitely differentiable right-hand side of
the equation.
Boundary value problems for functional differential equations appear in
control theory and, in particular, in the problem of damping a control
system with aftereffect [3]–[5]. In [6]–[10], conditions on the right-hand
sides of the differential–difference equations were obtained, which
guarantee the existence of generalized solutions preserving the smoothness
on the entire interval.
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There also arises a question: ”Under what conditions on the coefficients of
a difference operator the smoothness of generalized solutions of boundary
value problems for differential–difference equations is preserved on the
entire interval for any right-hand side?” The papers [11] and [12] deal with
the study of this issue.
However, there arises another unsolved problem: ”Will the generalized
eigenfunctions of differential–difference operators preserve their smoothness
on the entire interval or not?” The present paper is devoted to the study of
this problem.
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Let us define a difference operator R : L2(R)→ L2(R) by the formula

(Ru)(x) =
n∑

j=−n

αju(x + j), (1)

where αj ∈ C.
Let Q be an interval (0, d), where d = n + Θ, n ∈ N, 0 < Θ ≤ 1.
The shifts of arguments x → x + j in the operator R can map the points of
the interval Q into R \ Q.
We also introduce an operator RQ : L2(Q)→ L2(Q) by the formula

RQ = PQRIQ ,

where IQ : L2(Q)→ L2(R) is the operator of extension by zero of a
function from L2(Q) to R \ Q, PQ : L2(R)→ L2(Q) is the operator of the
restriction of a function from L2(R) to Q.
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Consider the partition of the interval Q = (0, d) into subintervals formed
from this interval by deleting the orbits of its endpoints under the group of
integer shifts.
If Θ = 1, then we obtain one class of disjoint subintervals Q1k = (k − 1, k)
for k = 1, ..., n + 1;
if 0 < Θ < 1, then we have two classes of disjoint intervals
Q1k = (k − 1, k − 1 + Θ), k = 1, ..., n + 1, and Q2k = (k − 1 + Θ, k),
k = 1, ..., n.
Define the vector function (Usu)(x) := (us

1, ..., u
s
N)T by the formula

us
k(x) = u(t + k − 1), x ∈ Qs1, k = 1, ...,N, (2)

where N = n + 1 for s = 1, N = n for s = 2.
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Denote by R1 the (n + 1) x (n + 1) matrix that has the form

R1 =


α0 α1 . . . αn
α−1 α0 . . . αn−1
...

...
. . .

...
α−n α−n+1 . . . α0

 ,

and R2 - the n x n matrix of the form

R2 =


α0 α1 . . . αn−1
α−1 α0 . . . αn−2
...

...
. . .

...
α−n+1 α−n+2 . . . α0

 .

It is clear that the matrix R2 can be obtained from R1 by deleting the last
row and the last column.
Lemma 1. The operator RQs = UsRQU−1

s : LN
2 (Qs1)→ LN

2 (Qs1) is the
operator of multiplication by the square matrix Rs .
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We introduce a differential–difference operator
AR : L2(0, d) ⊃ D(AR)→ L2(0, d) by the formula

ARu = −d2RQu
dx2 , u ∈ D(AR) = {u ∈ W̊ 1

2 (Q) : RQu ∈W 2
2 (Q)}. (3)

Definition 1. A function 0 6= u ∈ D(AR) is called a generalized
eigenfunction of the operator AR , corresponding to an eigenvalue λ if

ARu = λu. (4)
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Example 1. We define the difference operator R : L2(R) → L2(R) by the
formula

Ru(x) = 2u(x) + u(x − 1) + u(x + 1), Q = (0, 3), Θ = 1.

Fig. 1. u(x) Fig. 2. RQu(x)
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Definition 2. We say that the differential–difference operator −d2RQ
dx2

satisfies the strong ellipticity condition if the matrix R1 + R∗1 is positive
definite, where R∗1 is the Hermitian adjoint matrix.
Theorem 1. Let the operator AR be strongly elliptic. Then the spectrum
σ(AR) is discrete, and σ(AR) ⊂ {λ ∈ C : Reλ > 0}.
If, moreover, αj = α−j (|j | ≤ n), then the operator AR is self-adjoint, and
σ(AR) ⊂ R+ = {λ ∈ R : λ > 0}.
Theorem 2. Let detRs 6= 0 (s = 1, 2 for 0 < Θ < 1; s = 1 for Θ = 1),
and let 0 6= u be a generalized eigenfunction of the operator AR
corresponding to the eigenvalue λ.
Then u ∈W 2

2 (j − 1, j), j = 1, ..., n + 1, if Θ = 1, and
u ∈W 2

2 (j − 1, j − 1 + Θ), j = 1, ..., n + 1,
u ∈W 2

2 (j − 1 + Θ, j), j = 1, ..., n, if 0 < Θ < 1.
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Remark 1. If the operator AR is strongly elliptic, then detRs 6= 0
(s = 1, 2 for 0 < Θ < 1; s = 1 for Θ = 1). Thus, the conclusion of
Theorem 2 on the smoothness of generalized eigenfunctions on the
subintervals Qsj holds for generalized eigenfunctions of the strongly elliptic
operator AR .
However, there arises a question: "Is the smoothness of generalized
eigenfunctions preserved on the entire interval (0, d)?"
To answer this question, let us reduce problem (4) to a system of ordinary
differential equations with spectral parameter λ and with nonlocal
boundary conditions.
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We restrict ourselves to the case Θ = 1.
Let 0 6= u ∈ D(AR) be a generalized eigenfunction of AR corresponding to
the eigenvalue λ. Then equality (4) can be rewritten as

−V ′′(x) = λR−1
1 V (x), x ∈ (0, 1), (5)

where V (x) = (U1u)(x) satisfies the conditions:

v1(0) = 0, (6)

vn+1(1) = 0, (7)

vk(1) = vk+1(0), k = 1, ..., n, (8)

(R1V ′)k(1) = (R1V ′)k+1(0), k = 1, ..., n. (9)
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Lemma 2. The general solution of the system of ordinary differential
equations (5) has the form

V (x) = e i
√
λ
√

R−1
1 xCo + e−i

√
λ
√

R−1
1 xCe , (10)

where the (n + 1) - vectors Co = (C1,C3, ...,C2n+1)T ,
Ce = (C2,C4, ...,C2n+2)T ∈ Cn+1 are arbitrary.
Substituting (10) into the boundary conditions (6) - (9), we obtain the
system of linear equations

A(λ)C = 0, (11)

where C = (C1,C2, ...,C2n+1,C2n+2)T 6= 0.
A necessary and sufficient condition for system (11) to have a nontrivial
solution is that detA(λ) = 0. Thus, the set of eigenvalues of the operator
AR coincides with the set of roots of the determinant detA(λ).
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If we additionally require that the smoothness of generalized eigenfunctions
is preserved over the entire interval, i.e. u ∈W 2

2 (0, n + 1), then we must
add conditions (6)-(9) with the additional conditions

v ′k(1) = v ′k+1(0), k = 1, ..., n. (12)

Then the general solution of system (5) in the form (10) must be
substituted into the 3n + 2 the boundary conditions (6)-(9), (12). We
obtain a system

B(λ)C = 0 (13)

of 3n + 2 equations for 2n + 2 unknowns.
Theorem 3. Let the operator AR be strongly elliptic. Further, assume that
Θ = 1 and detA(λ) = 0. Then there exists a generalized eigenfunction
u ∈ W̊ 1

2 (0, d) \W 2
2 (0, d) corresponding to the eigenvalue λ if and only if

rangB(λ) > rangA(λ).
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Example 2. We define the difference operator R : L2(R)→ L2(R) by the
formula

(Ru)(x) = u(x) + αu(x − 1) + αu(x + 1), α ∈ R, x ∈ R. (14)

Let Q = (0, 2). We introduce an operator AR by formula (3). The matrix
R1 has the form

R1 =

(
1 α
α 1

)
.

We assume that α is an irrational number such that |α| < 1. Then the
matrix R1 is positive definite. Thus, the operator AR is strongly elliptic,
and, by Theorem 1, it is also self-adjoint, and one has σ(AR) ⊂ R+.
Consider the eigenfunction–eigenvalue problem

ARu = λu (15)

for the operator AR .
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Let vk(x) = u(x + k − 1), x ∈ (0, 1), k = 1, 2, then the generalized
eigenfunctions have the form

v1 = C1e
√

−λ
1+α

x
+ C2e

−
√

−λ
1+α

x
+ C3e

√
−λ
1−α

x
+ C4e

−
√

−λ
1−α

x
, (16)

v2 = C1e
√

−λ
1+α

x
+ C2e

−
√

−λ
1+α

x − C3e
√

−λ
1−α

x − C4e
−
√

−λ
1−α

x
. (17)

Substituting (16) and (17) into the boundary conditions and performing
some transformations, we obtain

C1 + C2 + C3 + C4 = 0, (18)

C1(e
√

−λ
1+α − 1) + C2(e−

√
−λ
1+α − 1) = 0, (19)

C3(e
√

−λ
1−α + 1) + C4(e−

√
−λ
1−α + 1) = 0, (20)

C2
√
λ(1 + α)(−e−

√
−λ
1+α + 1) + C3

√
λ(1− α)(e

√
−λ
1−α + 1) = 0. (21)
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The determinant of system (18)-(21) is equal to zero in the following three
cases:

1. e
√

−λ
1−α + 1 = 0. (22)

Then we have λk = (1− α)(π + 2πk)2,

uk(x) = sin(π(1 + 2k)x), x ∈ (0, 2), k = 0, 1, 2, ....

2. e
√

−λ
1+α − 1 = 0. (23)

Then we obtain λk = (1 + α)4π2k2,

uk(x) = sin(2πkx), x ∈ (0, 2), k = 1, 2, ....

3. 1−
√

1 + α

1− α
tg(

1
2

√
λ

1− α
) tg(

1
2

√
λ

1 + α
) = 0. (24)

Note that equations (22), (23), and (24) have countably many roots.
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Let us add additional condition that provides preservation of smoothness of
eigenfunctions at the point x = 1 (see (12)). This condition has the form

C1

√
λ

1 + α
(e

√
−λ
1+α − 1) + C2

√
λ

1 + α
(−e−

√
−λ
1+α + 1) + C3

√
λ

1− α
×

(e
√

−λ
1−α + 1) + C4

√
λ

1− α
(−e−

√
−λ
1−α − 1) = 0. (25)

Now let us verify that the conditions of Theorem 3 are satisfied. To this
end, we consider the determinant ∆1(λ) of the system formed by Eqs.
(18)–(20), and (25), and show that if λ is a root of (24), then ∆1 6= 0, and
the rank of system (18)–(21), (25) is equal to 4.
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The determinant of the system (18) - (20), (25) turns to zero in the
following cases:

1. e
√

−λ
1−α + 1 = 0, (26)

2. e
√

−λ
1+α − 1 = 0, (27)

3. 1−
√

1− α
1 + α

tg(
1
2

√
λ

1− α
) tg(

1
2

√
λ

1 + α
) = 0. (28)

It is possible to prove that for irrational number α 6= 0 equations (24) and
(26), (24) and (27), (24) and (28) have no common roots. Therefore, if
Eq.(24) is satisfied, then ∆1 6= 0, and the rank of system (18)–(21), (25) is
equal to 4. Then it follows from Theorem 3 that the eigenvalues λ of the
operator AR , which are also the roots of Eq.(24), correspond to the
generalized eigenfunctions u ∈ W̊ 1

2 (0, d) \W 2
2 (0, d).
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Thus, we have shown that the differential–difference operator AR generated
by the difference operator R given by formula (14) has countably many
generalized eigenfunctions whose smoothness is violated inside the interval
and countably many generalized eigenfunctions whose smoothness is
preserved.
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The above mentioned results were published in
R. Yu. Vorotnikov, A. L. Skubachevskii, ”Smoothness of Generalized
Eigenfunctions of Differential–Difference Operators on a Finite Interval”,
Mat. Zametki, 114:5 (2023), 679–701.
English translation in: Math. Notes, 114:5 (2023), 1002–1020.
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