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Lax pairs

The Korteweg�de Vries (KdV) equation

ut = 6uux + uxxx

and other classical 1D soliton equations integrated by the inverse

scattering method are represented by Lax pairs

Lt = [L,A],

where L and A are di�erential operators. For the KdV equation we

have

L = − d2

dx2
+ u(x , t).

These evolutions preserve the spectrum of the operator L deforming

the eigenfunctions as

ψt + Aψ = 0, where Lψ = Eψ.



The Darboux transformation

Every solution ω of the equation Lω = 0 de�nes a factorization of

L:

L = A⊤A, A = − d

dx
+ v , A⊤ =

d

dx
+ v , v =

ω′

ω
.

The Darboux transformation of H consists in swapping A⊤ and A:

L = A⊤A −→ L̃ = AA⊤ = − d2

dx2
+ ũ(x),

and it acts on eigenfunctions as follows:

ψ −→ ψ̃ = Aψ.

The Darboux transformation is extended to solutions of the KdV

equation.



L,A,B-triples

L,A,B-triples were introduced by Manakov in the middle of 1970s

as 2D equations presented in the form

Lt = [L,A] + BL

where L,A, and B are partial di�erential operators.

The spectrum is not preserved except its zero level

Lψ = 0

which evolves as in the case of Lax pairs:

ψt + Aψ = 0.



The Novikov�Veselov (NV) equation

Ut = Uzzz + Uz̄ z̄ z̄ + 3(VU)z + 3(V̄ U)z̄ = 0,

Vz̄ = Uz ,

with

L = ∂∂̄ + U,

U = U(z , z̄ , t),U = Ū.

In one-dimensional limit, U = U(x), it reduces to the KdV

equation.

This equation was derived in the framework of two-dimensional

Schrodinger operators which are �nite-gap on one level of energy.

Such operatos were introduced in 1976 by Dubrovin, Krichever, and

Novikov.



The modi�ed Novikov�Veselov (mNV) equation

Ut =
(
Uzzz + 3UzV +

3

2
UVz

)
+
(
Uz̄ z̄ z̄ + 3Uz̄ V̄ +

3

2
UV̄z̄

)
,

Vz̄ = (U2)z

where

L =

(
0 ∂
−∂̄ 0

)
+

(
U 0
0 U

)
,

U = Ū.

This equation was introduced in the early 1990s by Bogdanov. In

one-dimensional limit, U = U(x), it reduces to the modi�ed

Korteweg�de Vries equation.



The (focusing) Davey�Stewartson II (DS II) equation

Ut = i(Uzz + Uz̄ z̄ + (V + V̄ )U),

Vz̄ = 2(|U|2)z ,

where

L =

(
0 ∂
−∂̄ 0

)
+

(
U 0
0 Ū

)
.



The Moutard transformation
Let L = ∂∂̄ + u and

Lω = (−∆+ u)ω = 0,

where ∆ is the two-dimensional Laplace operator:

∆ =
∂2

∂x2
+

∂2

∂y2
.

The Moutard transformation of L is de�ned as

L̃ = −∆+ u − 2∆ logω = −∆− u + 2
ω2
x + ω2

y

ω2
.

If ψ satis�es Lψ = 0, then the function θ, de�ned via the system

(ωθ)x = −ω2

(
ψ

ω

)
y

, (ωθ)y = ω2

(
ψ

ω

)
x

,

satis�es L̃θ = 0.



The Moutard transformation and formation of singularities

To all these three equations (NV, mNV, and DSII) by using the

Moutard type transformations were constructed solutions such that

1) their initial data are smooth and fast decaying,

2) solutions are rational,

3) at certain critical time these solutions become singular.

▶ Novikov-Veselov (2008, T.�Tsarev, classical Moutard

transformation, the two-dimensional generalization of the

Darboux transformation for operators L = ∂∂̄ + U),

▶ modi�ed Novikov-Veselov (2016, T.),

▶ Davey�Stewartson II (2021, T.).

In all these cases the zero level energy spectrum degenerates as t
approaches the terminal time.



▶ Given

F (x , y , t) = 2(x4 + y4) +
8

3
(x3 + y3) + 4x2y2 + 20− 8t,

for

t < Tsing =
29

12
;

the functions

U = 2∂∂̄ log F , V = 2∂2 log F

satisfy the Novikov�Veselov equation and

Lψ = (∂∂̄ + U)ψ = 0, ψ =
xy

F
;



▶ Given

a = i(x2−y2), b = −y

(
y2

3
− x2 − 1

)
−i(x

(
1 + y2 − x2

3

)
+C−t), C ∈ R,

for

t ̸= Tsing = C

the function

U = i
a(|z |2 − 1) + b̄z̄ − bz

|a|2 + |b|2
satis�es the modi�ed Novikov�Veselov equation and

Lψ =

[(
0 ∂
−∂̄ 0

)
+

(
U 0
0 U

)]
ψ = 0

where

ψ =
1

|a|2 + |b|2

(
āz − b̄
ā+ b̄z̄

)
and the polynomial |a|2 + |b|2 vanishes if and only if C = t.
Moreover ∫

R2

U2 dxdy =

{
3π for t ̸= C ,

2π for t = C .



▶ For

t ̸= Tsing ̸= C ∈ R

the function

U = i
z2 − 2i(t − C )

|z |2 + |z2 + 2i(t − C )|2

satis�es the Davey�Stewartson II equation and

Lψ =

[(
0 ∂
−∂̄ 0

)
+

(
U 0
0 Ū

)]
ψ = 0

where

ψ =
1

|z |2 + |z2 + 2i(t − C )|2

(
z̄

−iz2 + 2(t − C )

)
.

Moreover ∫
R2

|U|2 dxdy =

{
2π for t ̸= C ,

π for t = C .



The Weierstrass representation of surfaces in R4.I

D = L =

(
0 ∂
−∂̄ 0

)
+

(
U 0
0 Ū

)
, D∨ =

(
0 ∂
−∂̄ 0

)
+

(
Ū 0
0 U

)
Dψ = 0, D∨φ = 0.

then the formulae

xk(P) = xk(P0) +

∫ (
xkz dz + x̄kz dz̄

)
, k = 1, . . . , 4,

x1z =
i

2
(φ̄2ψ̄2 + φ1ψ1), x2z =

1

2
(φ̄2ψ̄2 − φ1ψ1),

x3z =
1

2
(φ̄2ψ1 + φ1ψ̄2), x4z =

i

2
(φ̄2ψ1 − φ1ψ̄2),

de�ne the surface in R4 (Konopelchenko)



The Weierstrass representation of surfaces in R4.II
If z = u + iv is a conformal parameter, i.e.

ds2 = eα(du2 + dv2),

then (
∂X

∂u
,
∂X

∂u

)
=

(
∂X

∂v
,
∂X

∂v

)
,(

∂X

∂u
,
∂X

∂v

)
= 0,

and ∑(
∂X k

∂z

)2

=

[(
∂X

∂u
,
∂X

∂u

)
−
(
∂X

∂v
,
∂X

∂v

)]
+

+2i

(
∂X

∂u
,
∂X

∂v

)
,

i.e. ∑(
∂X k

∂z

)2

= 0.



The Weierstrass representation of surfaces in R4.III

G̃n,2 is the quadric Q:

z21 + · · ·+ z2n = 0, (z1 : · · · : zn) ∈ Qn ⊂ CPn−1.

For a surface with a conformal parameter z , we de�ne the Gauss
map as

z →
(
∂X 1

∂z
: · · · : ∂X

n

∂z

)
∈ Qn.

For n = 4 we have the di�eomorphic Segre mapping

CP1 × CP1 → Q4

z1 =
i

2
(a1b1 + a2b2), z2 =

1

2
(a2b2 − a1b1),

z3 =
1

2
(a1b2 − a2b1), z4 =

i

2
(a2b1 − a1b2),

where (a1 : a2) ∈ CP1, (b1 : b2) ∈ CP1.



The Weierstrass representation of surfaces in R4.IV

The spinors ψ and φ take the form

φ = (a1, ā2), ψ = (b1, b̄2)

and are reconstructed up to the gauge transformations

ψ1 → ehψ1, ψ2 → e h̄ψ2,

φ1 → e−hφ1, φ2 → e−h̄φ2, U → e h̄−hU,

with h holomorphic.

Every surface in R4 has a global Weierstrass (spinor) representation

(T., 2006).

Q3 is CP1 and for n > 4 the quadrics Qn have no such rational

parameterizations.



DSII deformation of surfaces

Since D enters the L,A,B-triples for the DS hierarchy,

Konopelchenko (2000) proposed to construct soliton deformations

of surfaces:

ψt = Aψ, φt = A∨φ

give a deformation of the Gauss map and it de�nes a deformation

of surfaces up to translations by r(t) ∈ R4.

Such deformations also depend on resolving the constraint

Vz̄ = 2(|U|2)z .

One can de�ne a deformation governed by DSII globally such that

it preserves ∫
|U|2dx ∧ dy

which is (up to a multiple) the Willmore functional of the surface

(T., 2006).



The Moutard transformation of solutions of DSII.I

Let us write down the surface in the form

S(φ,ψ)(z , z̄) =

=

∫ [
i

(
ψ1φ̄2 −ψ̄2φ̄2

ψ1φ1 −ψ̄2φ1

)
dz + i

(
ψ2φ̄1 ψ̄1φ̄1

−ψ2φ2 −ψ̄1φ2

)
dz̄

]
=

=

∫
d

(
ix3 + x4 −x1 − ix2

x1 − ix2 −ix3 + x4

)
with S ∈ H = R4.

Then take its DSII deformation S(z , z̄ , t) and for every moment of

time take its Moebius transform:

S → S−1.



The Moutard transformation of solutions of DSII.II

Given a surface we a conformal parameter z , we de�ne its potential
U.
The Moebius transformation is conformal and hence we get a

transformation of potentials

U(z , z̄ , t) → Ũ(z , z̄ , t)

which maps solutions of DSII into solutions of DSII (T., 2021).



Minimal surfaces in R4 and solutions to DSII

Let f (z , t) be a function which is holomorphic in z and satis�es the

equation
∂f

∂t
= i

∂2f

∂z2
.

It de�nes the DSII deformation of the minimal surface

z2 = f (z1) in C2 = R4.

Then

U =
i(zf ′ − f )

|z |2 + |f |2
, V = 2iaz ,

where

a = − i(z̄ + f ′)f̄

|z |2 + |f |2
,

satisfy the Davey�Stewartson II equation (T., 2021).



Example

f = z4 + 12itz2 − 12t2 + c ,

U =
i(3z4 + 12itz2 + 12t2 − c)

|z |2 + |z4 + 12itz2 − 12t2 + c |2

becomes singular for c = 12t2 and it has singularities

U ∼ −12te2iϕ at z = 0 for t = ±
√

c/12.

The �rst integral
∫
|U|2dxdy is equal to 4π for t such that U is

nonsingular and is equal to 3π for t = Tsing.

The multiplicity of the value of this functional to π in both cases is

explained by that the surfaces S−1 are immersed Willmore spheres

(with singularities for singular moments of time). First time, such

an e�ect was established for the mNV equation (T., 2016).



The Ozawa solution

U(x , y , 0) =
e−i(b/a)(y2−x2)

a+ 2(x2 + y2)/a

Let

−a

b
= Tsing > 0,

then ∫
|U|2dxdy → 2πδ

for t → Tsing , where δ is the Dirac distribution centered at the

origin, and at another moments of time the solution is nonsingular.


