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Introduction

In this talk, we consider the 1D Schrödinger equation of the form

−y′′+
(
q(x) +

N∑
k=1

αkδ(x− xk)

)
y = λy, 0 < x < b, λ ∈ C, (1)

where

q ∈ L2(0, b) is a complex valued function.

δ(x) is the Dirac delta distribution.

0 < x1 < x2 < · · · < xN < b and α1, . . . , αN ∈ C \ {0} are the
point interactions.
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Schrödinger equations with distributional coefficients supported
on a set of measure zero naturally appear in various problems of
mathematical physics and have been studied in a considerable
number of publications and from different perspectives.

Eq. (1) can be interpreted as a regular equation, i.e., with the
regular potential q ∈ L2(0, b), whose solutions are continuous
and such that their first derivatives satisfy the jump condition
y′(xk+)− y′(xk−) = αky(xk) at special points:

A. N. Kochubei, One-dimensional point interactions, Ukr.
Math. J. 41 (1989), 1198-1201. Doi: 10.1007/BF01057262.
A. S. Kostenko, M. M. Malamud One-Dimensional
Schrödinger operators with δ-interactions, Functional Analysis
and its Applications, Vol. 44, No. 2 (2010) 151-155.
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Another approach consists in considering the interval [0, b] as a
quantum graph whose edges are the segments [xk, xk+1],
k = 0, . . . , N , (setting x0 = 0, xN+1 = b), and the Schrödinger
operator with the regular potential q as an unbounded operator
on the direct sum

⊕N
k=0H

2(xk, xk+1), with the domain given by
the families (yk)

N
k=0 that satisfy the condition of continuity

yk(xk−) = yk+1(xk+) and the jump condition for the derivative
y′k+1(xk+)− y′k(xk−) = αkyk(xk) for k = 1, . . . N :

F. Gesztesy, W. Kirsch, One-dimensional Schrödinger
operators with interactions singular on a discrete set, Journal
für die reine und angewandte Mathematik 362, (1985), 28-50.

P. Kurasov, Distribution theory for discontinuous tests
functions and differential operators with generalized coefficients,
J. Math. Anal. Appl. 201(1) (1996), 297-323.
P. Kurasov, J. Larson, Spectral asymptotics for
Schrödinger operators with generalized coefficients, J. Math.
Anal. Appl. 266(1) (2002), 127-148.
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Yet another approach implies a regularization of the Schrödinger
operator with point interactions, that is, finding a subdomain of
the Hilbert space L2(0, b), where the operator defines a function
in L2(0, b).

For this, note that the potential q(x) +
∑N

k=1 αkδ(x− xk)
defines a functional that belongs to the Sobolev space
H−1(0, b). These forms of regularization have been studied,
rewriting the operator by means of a factorization that involves
a primitive σ of the potential.

M. A. Savchuk, A. A. Shkalikov, Sturm-Liouville
operators with singular potentials, Mathematical Notes 66
(1999), 741-753.
R. O. Hryniv, Y. V. Mykytyuk, Transformation operators
for Sturm-Liouville operators with singular potentials, Math.
Phys. Anal. Geom. 7 (2004), 119-149.
N. P. Bondarenko, Solving An Inverse Problem For The
Sturm-Liouville Operator With A Singular Potential By Yurko’s
Method, Tamkang Journal of Mathematics, Vol. 52, No. 1
(2021), 125-154.
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V. A. Vicente Beńıtez Vekua March 20, 2025 5 / 50



Yet another approach implies a regularization of the Schrödinger
operator with point interactions, that is, finding a subdomain of
the Hilbert space L2(0, b), where the operator defines a function
in L2(0, b).

For this, note that the potential q(x) +
∑N

k=1 αkδ(x− xk)
defines a functional that belongs to the Sobolev space
H−1(0, b). These forms of regularization have been studied,
rewriting the operator by means of a factorization that involves
a primitive σ of the potential.

M. A. Savchuk, A. A. Shkalikov, Sturm-Liouville
operators with singular potentials, Mathematical Notes 66
(1999), 741-753.

R. O. Hryniv, Y. V. Mykytyuk, Transformation operators
for Sturm-Liouville operators with singular potentials, Math.
Phys. Anal. Geom. 7 (2004), 119-149.
N. P. Bondarenko, Solving An Inverse Problem For The
Sturm-Liouville Operator With A Singular Potential By Yurko’s
Method, Tamkang Journal of Mathematics, Vol. 52, No. 1
(2021), 125-154.
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Theory of transmutation operators, also called transformation
operators, is a widely used tool in studying differential equations
and spectral problems.

It is known that under certain general conditions on the
potential q the transmutation operator transmuting the second
derivative into the Schrödinger operator can be realized in the
form of a Volterra integral operator of the second kind.

Functional series representations of the transmutation kernel
have been constructed and used for practical solving direct and
inverse Sturm-Liouville problems
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V. V. Kravchenko, S. M. Torba, A direct method for
solving inverse Sturm-Liouville problems, Inverse Problems 37
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V. V. Kravchenko, Reconstruction techniques for complex
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033501
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−y′′ + (q +
∑

αkδxk ) y = λy

��
Closed form solution

(In terms of sol. of reg. eq.)

��
Transmutation operator

(Explicit form)

px &.
SPPS method

��

NSBF representation

px ��
Complete Systm. of Sol.

(Formal powers)
Direct spectral prob. Inverse spectral prob.
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We use the following notations:

IN = {(xj, αj)}Nj=1, which contains the information about the
point interactions.

qδ,IN (x) :=
N∑
k=1

αkδ(x− xk) (the distributional part of the

potential).

Lq := − d2

dx2 + q(x) (the regular Schrödinger operator).

Lq,IN := Lq + qδ,IN (x) .

D(0, b) = C∞
0 (0, b) (test functions), D ′(0, b) (distributions),

Hk(0, b) = W k,2(0, b), H1
0 (0, b) = W 1,2

0 (0, b) = D(0, b)
H1

,
H−1(0, b) = (H1

0 (0, b))
′.
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V. A. Vicente Beńıtez Vekua March 20, 2025 9 / 50



We use the following notations:

IN = {(xj, αj)}Nj=1, which contains the information about the
point interactions.

qδ,IN (x) :=
N∑
k=1

αkδ(x− xk) (the distributional part of the

potential).

Lq := − d2

dx2 + q(x) (the regular Schrödinger operator).

Lq,IN := Lq + qδ,IN (x) .

D(0, b) = C∞
0 (0, b) (test functions), D ′(0, b) (distributions),

Hk(0, b) = W k,2(0, b), H1
0 (0, b) = W 1,2

0 (0, b) = D(0, b)
H1

,
H−1(0, b) = (H1

0 (0, b))
′.
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For u ∈ L2,loc(0, b), Lq,INu defines a distribution in D ′(0, b) as
follows

(Lq,INu, ϕ)C∞
0 (0,b) :=

∫ b

0

u(x)Lqϕ(x)dx+
N∑
k=1

αku(xk)ϕ(xk).

The function u must be well defined at the points xk,
k = 1, . . . , N .

When u ∈ H1(0, b), the distribution Lq,INu can be extended to
a functional in H−1(0, b) as follows

(Lq,INu, v)H1
0 (0,b)

:=

∫ b

0

{u′(x)v′(x) + q(x)u(x)v(x)}dx

+
N∑
k=1

αku(xk)v(xk).
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F ∈ D ′(0, b) is L2-regular if there exists g ∈ L2(0, b) such that

(F, ϕ)C∞
0 (0,b) =

∫ b

0
gϕ.

Proposition

If u ∈ L2,loc(0, b), then the distribution Lq,INu is L2-regular iff the
following conditions hold.

1 For each k = 0, . . . , N , u|(xk,xk+1) ∈ H2(xk, xk+1).

2 u ∈ AC[0, b].

3 The discontinuities of the derivative u′ are located at the points xk,
k = 1, . . . , N , and the jumps are given by

u′(xk+)− u′(xk−) = αju(xk) for k = 1, · · · , N. (2)

In such case,

(Lq,INu, ϕ)C∞
0 (0,b) = (Lqu, ϕ)C∞

0 (0,b) for all ϕ ∈ C∞
0 (0, b). (3)
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Closed form solution

The L2-regularization domain of Lq,IN , denoted by
D2 (Lq,IN ), is the set of all functions u ∈ L2,loc(0, b) satisfying
conditions 1,2 and 3 of the previous proposition.

A function u ∈ L2,loc(0, b) is a solution of Eq. (1) iff
u ∈ D2 (Lq,IN ) and for each k = 0, . . . , N , the restriction
u|(xk,xk+1) is a solution of the regular Schrödinger equation

− y′′(x) + q(x)y(x) = λy(x) for xk < x < xk+1. (4)

In what follows, denote λ = ρ2, ρ ∈ C.
Let ŝk(ρ, x) be the unique solution of the Cauchy problem{
−ŝ′′k(ρ, x) + q(x+ xk)ŝk(ρ, x) = ρ2ŝk(ρ, x), 0 < x < b− xk,

ŝk(ρ, 0) = 0, ŝ′k(ρ, 0) = 1.

(5)
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ŝk(ρ, 0) = 0, ŝ′k(ρ, 0) = 1.
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Let ŝk(ρ, x) be the unique solution of the Cauchy problem{
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ŝk(ρ, 0) = 0, ŝ′k(ρ, 0) = 1.

(5)
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ŝk(ρ, x− xk) is the solution of Lqu = ρ2u on (xk, b) with initial
conditions u(xk) = 0, u′(xk) = 1.

H(t) is the Heaviside function.

(Lq − ρ2) (H(x− xk)ŝk(ρ, x− xk)) = −δ(x− xk) for
xk < x < b1

We denote by JN the set of finite sequences J = (j1, . . . , jl)
with 1 < l ⩽ N , {j1, . . . , jl} ⊂ {1, . . . , N} and j1 < · · · < jl.

Given J ∈ JN , the length of J is denoted by |J | and we define
αJ := αj1 · · ·αj|J| .

χA denotes the characteristic function of the interval [−A,A].

1See Ch. 3 of V. S. Vladimirov, Equations of Mathematical Physics. New
York: Marcel Dekker; 1971.
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Theorem

Given u0, u1 ∈ C, the unique solution uIN ∈ D2 (Lq,IN ) of the
Cauchy problem{

Lq,INu(x) = λu(x), 0 < x < b,

u(0) = u0, u
′(0) = u1.

has the form

uIN (ρ, x) = ũ(ρ, x) +

N∑
k=1

αkũ(ρ, xk)H(x− xk)ŝk(ρ, x− xk)

+
∑
J∈JN

αJH(x−xj|J|)ũ(ρ, xj1)

|J |−1∏
l=1

ŝjl(ρ, xjl+1
− xjl)

 ŝj|J|(ρ, x−xj|J|)
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where ũ(ρ, x) is the unique solution of the regular Schrödinger
equation

Lqũ(ρ, x) = ρ2ũ(ρ, x), 0 < x < b,

satisfying the initial conditions ũ(ρ, 0) = u0, ũ
′(ρ, 0) = u1.
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Example

Denote by e0IN (ρ, x) the unique solution of

−y′′ +
(

N∑
k=1

αkδ(x− xk)

)
y = ρ2y, 0 < x < b,

satisfying e0IN (ρ, 0) = 1, (e0IN )
′(ρ, 0) = iρ. In this case we have

ŝk(ρ, x) =
sin(ρx)

ρ
for k = 1, . . . , N . Hence, the solution e0IN (ρ, x) has

the form

e0IN (ρ, x) = eiρx +

N∑
k=1

αke
iρxkH(x− xk)

sin(ρ(x− xk))

ρ

+
∑
J∈JN

αJH(x−xj|J|)e
iρxj1

|J |−1∏
l=1

sin(ρ(xjl+1
− xjl))

ρ

 sin(ρ(x− xj|J|))

ρ
.
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Transmutation operators

Let h ∈ C. Denote by ẽh(ρ, x) the unique solution of the regular
equation satisfying ẽh(ρ, 0) = 1, ẽ′h(ρ, 0) = iρ+ h.

There exists a kernel2 K̃h ∈ C(Ω) ∩H1(Ω), where
Ω = {(x, t) ∈ R2 | 0 < x < b, |t| < x}, such that

K̃h(x, x) = h
2
+ 1

2

∫ x

0
q(s)ds, K̃h(x,−x) = h

2
and

ẽh(ρ, x) = eiρx +

∫ x

−x

K̃h(x, t)eiρtdt

2V. A. Marchenko, Sturm-Liouville operators and applications, Birkhäuser,
Basel, 1986.
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For each k ∈ {1, . . . , N} there exists a kernel

Ĥk ∈ C(Ωk) ∩H1(Ωk) with
Ωk = {(x, t) ∈ R2 | 0 < x < b− xk, |t| ⩽ x}, and
Ĥk(x, x) =

1
2

∫ x+xk

xk
q(s)ds, Ĥk(x,−x) = 0, such that

ŝk(ρ, x) =
sin(ρx)

ρ
+

∫ x

0

Ĥk(x, t)
sin(ρt)

ρ
dt

From this we obtain the representation

ŝk(ρ, x− xk) =

∫ x−xk

−(x−xk)

K̃k(x, t)e
iρtdt,

where

K̃k(x, t) =
1

2
χx−xk

(t) +
1

2

∫ x−xk

|t|
Ĥk(x− xk, s)ds.
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The unique solution ehIN (ρ, x) of the eq. with point interactions

which satisfies the initial conditions ehIN (ρ, 0) = 1,

(ehIN )
′(ρ, 0) = iρ+ h is given by

ehIN (ρ, x) = ẽh(ρ, x) +

N∑
k=1

αkẽh(ρ, xk)H(x− xk)ŝk(ρ, x− xk)

+
∑
J∈JN

αJH(x−xj|J|)ẽh(ρ, xj1)

|J |−1∏
l=1

ŝjl(ρ, xjl+1
− xjl)

 ŝj|J|(ρ, x−xj|J|)
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Theorem

There exists a kernel Kh
IN
(x, t) defined on Ω such that

ehIN (ρ, x) = eiρx +

∫ x

−x

Kh
IN
(x, t)eiρtdt. (6)

For any 0 < x ⩽ b, Kh
JN
(x, t) is piecewise absolutely continuous with

respect to the variable t ∈ [−x, x] and satisfies
Kh

IN
(x, ·) ∈ L2(−x, x). Furthermore, Kh

IN
∈ L∞(Ω).
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The explicit form of the kernel is

Kh
IN

(x, t) = χx(t)K̃
h(x, t)

+
n∑

k=1

αkH(x− xk)
(
χ[2xk−x,x](t)K̃k(x, t− xk) + χxk (t)K̃

h(xk, t) ∗ χx−xk (t)K̃k(x, t)
)

+
∑

J∈JN

αJH(x− xj|J| )

|J|−1∏
l=1

∗ (
χxjl+1

−xjl
(t)K̃jl (xjl+1

, t)
)

∗
(
χx−(xj|J|−xj1

)(t)K̃j|J| (x, t− xj1 ) + χxj1
(t)K̃h(xj1 , t) ∗ χx−xj|J|

(t)K̃j|J| (x, t)
)
.
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Example

Consider the equation −y′′ + α1δ(x− x1)y = ρ2y. In this case the
solution e0I1(ρ, x) is given by

e0I1(ρ, x) = eiρx + α1e
iρx1H(x− x1)

sin(ρ(x− x1))

ρ
.

We have

eiρx1
sin(ρ(x− x1))

ρ
=

1

2

∫ x−x1

x1−x

eiρ(t+x1)dt =
1

2

∫ x

2x1−x

eiρtdt.

Hence e0I1(ρ, x) = eiρx +
∫ x

−x
K0

I1
(x, t)eiρtdt with

K0
I1
(x, t) =

α1

2
H(x− x1)χ[2x1−x,x](t).

V. A. Vicente Beńıtez Vekua March 20, 2025 22 / 50



Example

Now we consider the equation with two interactions
I2 = {(α1, x1), (α2, x2)}. In this case, the solution e0I2(ρ, x) has the
form

e0I2
(ρ, x) = eiρx + α1e

iρx1H(x− x1)
sin(ρ(x− x1))

ρ
+ α2e

iρx2H(x− x2)
sin(ρ(x− x2))

ρ

+ α1α2e
iρx1H(x− x2)

sin(ρ(x2 − x1))

ρ

sin(ρ(x− x2))

ρ
,

and the transmutation kernel K0
I2
(x, t) has the form

K0
I2
(x, t) =

α1H(x− x1)

2
χ[2x1−x,x](t) +

α2H(x− x2)

2
χ[2x1−x,x](t)

+
α1α2H(x− x2)

4
(χx2−x1 ∗ χx−x2) (t− x1).

V. A. Vicente Beńıtez Vekua March 20, 2025 23 / 50



Direct computation shows that

χx2−x1
∗ χx−x2

(t− x1) =
0, t ̸∈ [2x1 − x, x],

t+ x− 2x1, 2x1 − x < t < −|2x2 − x− x1|+ x1,

x− x1 − |2x2 − x− x1|, −|2x2 − x− x1|+ x1 < t < |2x2 − x− x1|+ x1

x− t, |2x2 − x− x1|+ x1 < t < x.

In the next figure, we can see some level curves of the kernel
K0

I2
(x, t) (as a function of t), I2 = {(0,25, 1), (0,75, 2)}, for some

values of x.
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Figura: The graphs of K0
I2
(x, t), as a function of t ∈ [−1, 1], for some

points x ∈ (0, 1) and I2 = {(0,25, 1), (0,75, 2)}.
V. A. Vicente Beńıtez Vekua March 20, 2025 25 / 50



Proposition

The integral transmutation kernel Kh
IN

satisfies the following Goursat
conditions for x ∈ [0, b]

Kh
JN
(x, x) =

1

2

(
h+

∫ x

0

q(s)ds+ σIN (x)

)
and Kh

IN
(x,−x) = h

2
,

(7)
where

σIN (x) :=
N∑
k=1

αkH(x− xk).

Thus, 2Kh
IN
(x, x) is a (distributional) antiderivative of the potential

q(x) + qδ,IN (x).
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Let chIN (ρ, x) and sIN (ρ, x) be the solutions of Eq. (1) satisfying the
initial conditions

chIN (ρ, 0) = 1, (chIN )
′(ρ, 0) = h,

sIN (ρ, 0) = 0, s′IN (ρ, 0) = 1.

Note that chIN (ρ, x) =
ehIN

(ρ,x)+ehIN
(−ρ,x)

2
and

sIN (ρ, x) =
ehIN

(ρ,x)−ehIN
(−ρ,x)

2iρ
. Hence

chIN (ρ, x) = cos(ρx) +

∫ x

0

Gh
IN
(x, t) cos(ρt)dt,

sIN (ρ, x) =
sin(ρx)

ρ
+

∫ x

0

SIN (x, t)
sin(ρt)

ρ
dt,

where

Gh
IN
(x, t) = Kh

IN
(x, t) +Kh

IN
(x,−t),

SIN (x, t) = Kh
IN
(x, t)−Kh

IN
(x,−t).
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The SPPS Method

Let f ∈ D2(Lq,IN ) be a nonvanishing solution of equation
Lq,INf = 0.

We define the following recursive integrals: X̃(0) ≡ X(0) ≡ 1,
and for k ∈ N

X̃(k)(x) := k

∫ x

0

X̃(k−1)(s)
(
f 2(s)

)(−1)k−1

ds, (8)

X(k)(x) := k

∫ x

0

X(k−1)(s)
(
f 2(s)

)(−1)k
ds. (9)

The functions {φ(k)
f (x)}∞k=0 defined by

φ
(k)
f (x) :=

{
f(x)X̃(k)(x), if k even,

f(x)X(k)(x), if k odd.
(10)

for k ∈ N0, are called the formal powers associated to f .
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V. A. Vicente Beńıtez Vekua March 20, 2025 28 / 50



Theorem (SPPS method)

The functions

u0(ρ, x) =
∞∑
k=0

(−1)kρ2kφ
(2k)
f (x)

(2k)!
, u1(ρ, x) =

∞∑
k=0

(−1)kρ2kφ
(2k+1)
f (x)

(2k + 1)!

belong to D2 (Lq,IN ), and {u0(ρ, x), u1(ρ, x)} is a fundamental set of
solutions for the equation with point interactions, satisfying the initial
conditions

u0(ρ, 0) = f(0),u′0(ρ, 0) = f ′(0), (11)

u1(ρ, 0) = 0,u′1(ρ, 0) =
1

f(0)
, (12)

The series converge absolutely and uniformly on x ∈ [0, b], the series
of the derivatives converge in L2(0, b) and the series of the second
derivatives converge in L2(xj, xj+1), j = 0, · · · , N .
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With respect to ρ the series converge absolutely and uniformly on any
compact subset of the complex ρ-plane.

The proof of the convergence is given by the estimates of the
form

|X̃(n)(x)| ⩽Mn
1 b

n, |X(n)(x)| ⩽Mn
1 b

n for all x ∈ [0, b],

and the relations for the derivatives:

Dφ
(k)
f =

f ′

f
φ
(k)
f + kφ

(k−1)
1
f

D2φ
(k)
f =

f ′′

f
φ
(k)
f + k(k − 1)φ

(k−2)
f

The formal powers satisfy the conditions

Lq,INφ
(k)
f = 0, k = 0, 1, and Lq,INφ

(k)
f = −k(k−1)φ

(k−2)
f , k ≥ 2,

that is, {φ(k)
f }∞k=0 is an −Lq,IN -base.
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Proposition

Let {u, v} ∈ D2 (Lq,IN ) be a fundamental set of solutions for (1).
Then there exist constants c1, c2 ∈ C such that the solution
f = c1u+ c2v does not vanish in the whole segment [0, b].

Consequently, there exists a pair of constants (c1, c2) ∈ C2 \ {(0, 0)}
such that

y0(x) = c1 + c2x+
N∑
k=1

αk(c1 + c2xk)H(x− xk)(x− xk)

+
∑
J∈JN

αJ(c1 + c2xj1)H(x− xj|J|)

|J |−1∏
l=1

(xjl+1
− xj1)

 (x− xj|J|)

is a non-vanishing solution of the the equation with purely
distributional potential for ρ = 0 (if α1, . . . , αk ∈ (0,∞), it is enough
with choosing c1 = 1, c2 = 0).
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Theorem

Define the recursive integrals {Y (k)}∞k=0 and {Ỹ (k)}∞k=0 as follows:
Y (0) ≡ Ỹ (0) ≡ 1, and for k ⩾ 1

Y (k)(x) =

{∫ x

0
Y (k)(s)q(s)y20(s)ds, if k is even,∫ x

0
Y (k)(s)

y20(s)
ds, if k is odd,

(13)

Ỹ (k)(x) =

{∫ x

0
Ỹ (k)(s)q(s)y20(s)ds, if k is odd,∫ x

0
Ỹ (k)(s)

y20(s)
ds, if k is even.

(14)

Define

f0(x) = y0(x)
∞∑
k=0

Ỹ (2k)(x), f1(x) = y0(x)
∞∑
k=0

Y (2k+1)(x). (15)

V. A. Vicente Beńıtez Vekua March 20, 2025 32 / 50



Then {f0, f1} ⊂ D2 (Lq,IN ) is a fundamental set of solution for
Lq,INu = 0 satisfying the initial conditions f0(0) = c1, f

′
0(0) = c2,

f1(0) = 0, f ′
1(0) = 1. Both series converge uniformly and absolutely

on x ∈ [0, b]. The series of the derivatives converge in L2(0, b), and
on each interval [xj, xj+1], j = 0, . . . , N , the series of the second
derivatives converge in L2(xj, xj+1). Hence there exist constants
C1, C2 ∈ C such that f = C1f0 + C2f1 is a non-vanishing solution of
Lq,INu = 0 in [0, b].
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Transmutation property

Suppose that f(0) = 1 and set h = f ′(0).

Let Kf
IN

be the transmutation kernel associated to h = f ′(0)
and define the operator

Tf
IN
u(x) := u(x) +

∫ x

−x

Kf
IN
(x, t)u(t)dt.

Note that Tf
IN

∈ B(L2(−b, b), L2(0, b)).

efIN (ρ, x) = Tf
IN
[eiρx].

By the SPPS method,

ehIN (ρ, x) =
∞∑
k=0

(iρ)kφ
(k)
f (x)

k!
.
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V. A. Vicente Beńıtez Vekua March 20, 2025 34 / 50



Transmutation property

Suppose that f(0) = 1 and set h = f ′(0).

Let Kf
IN

be the transmutation kernel associated to h = f ′(0)
and define the operator

Tf
IN
u(x) := u(x) +

∫ x

−x

Kf
IN
(x, t)u(t)dt.

Note that Tf
IN

∈ B(L2(−b, b), L2(0, b)).

efIN (ρ, x) = Tf
IN
[eiρx].

By the SPPS method,

ehIN (ρ, x) =
∞∑
k=0

(iρ)kφ
(k)
f (x)

k!
.
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Substituting the Taylor series of the exponential in Tf
IN
[eiρx] and

comparing with the SPPS series we obtain:

Theorem

The transmutation operator Tf
IN

satisfies the following relations

Tf
IN

[
xk
]
= φ

(k)
f (x) ∀k ∈ N0. (16)

Since {φ(k)
f }∞k=0 are an −Lq,IN -base, by linearity we get the

transmutation relation

Lq,INT
f
IN
p = −TIND

2p

for all p ∈ P [−b, b] = Span{xk}∞k=0.
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Relation Lq,INT
f
IN
p = −TIND

2 can be written as

Tf
IN
p(x) = p(0)φ

(0)
f +p′(0)φ

(1)
f (x)−f(x)

∫ x

0

1

f2(t)

∫ t

0

f(s)Tf
IN
p′′(s)dsdt

Since the operators involved are bounded and P [−b, b] is dense
in H2(−b, b) we get the following result

Theorem

The operator Tf
IN

is a transmutation operator for the pair Lq,IN ,

−D2 in H2(−b, b), that is, Tf
IN

(H2(−b, b)) ⊂ D2 (Lq,IN ) and

Lq,INTINu = −TIND
2u ∀u ∈ H2(−b, b)
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Fourier-Legendre and NSBF expansions

For x ∈ (0, b] fixed, Kf
IN
(x, ·) ∈ L2(−x, x), hence it admits a

Fourier series in the orthonormal basis
{
Pn

(
t
x

)}∞
n=0

, where
{Pn(τ)}∞n=0 are the Legendre polynomials.

Hence Kh
IN
(x, t) =

∞∑
n=0

an(x)

x
Pn

(
t

x

)
.

The coefficients are given by

an(x) =

(
n+

1

2

)∫ x

−x

Kh
IN
(x, t)Pn

(
t

x

)
dt ∀n ∈ N0
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Example

Consider the kernel K0
I1
(x, t) = α1

2
H(x− x1)χ[2x1−x,x]. In this case,

the Fourier-Legendre coefficients have the form

an(x) =
α1

2

(
n+

1

2

)
H(x− x1)

∫ x

2x1−x

Pn

(
t

x

)
dt

=
α1

2

(
n+

1

2

)
xH(x− x1)

∫ 1

2
x1
x
−1

Pn(t)dt.

From this we obtain a0(x) =
α1

2
H(x− x1)(x− x1). Using formula

Pn(t) =
1

2n+1
d
dt
(Pn+1(t)− Pn−1(t)) for n ∈ N, and that Pn(1) = 0

for all n ∈ N, we have

an(x) =
α1

4
xH(x− x1)

[
Pn−1

(
2x1
x

− 1

)
− Pn+1

(
2x1
x

− 1

)]
.
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Similar representations can be obtained for the cosine and sine
kernels:

Gh
IN
(x, t) =

∞∑
n=0

gn(x)

x
P2n

(
t

x

)
,

SIN (x, t) =
∞∑
n=0

sn(x)

x
P2n+1

(
t

x

)
,

where the coefficients are given by

gn(x) = 2a2n(x) = (4n+ 1)

∫ x

0

Gh
IN
(x, t)P2n

(
t

x

)
dt,

sn(x) = 2a2n+1 = (4n+ 3)

∫ x

0

SIN (x, t)P2n+1

(
t

x

)
dt.

V. A. Vicente Beńıtez Vekua March 20, 2025 39 / 50



For every n ∈ N0 we write the Legendre polynomial Pn(z) in the
form Pn(z) =

∑n
k=0 lk,nz

k.

Note that if n is even, lk,n = 0 for odd k, and
P2n(z) =

∑n
k=0 l̃k,nz

2k with l̃k,n = l2k,2n.

Similarly P2n+1(z) =
∑n

k=0 l̂k,nz
2k+1 with l̂k,n = l2k+1,2n+1.

Proposition

The coefficients {an(x)}∞n=0 of the Fourier-Legendre expansion of the
canonical transmutation kernel Kf

IN
(x, t) are given by

an(x) =

(
n+

1

2

)( n∑
k=0

lk,n
φ
(k)
f (x)

xk
− 1

)
.
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The coefficients of the canonical cosine and sine kernels satisfy the
following relations for all n ∈ N0

gn(x) = (4n+ 1)

(
n∑

k=0

l̃k,n
φ
(2k)
f (x)

x2k
− 1

)
,

sn(x) = (4n+ 3)

(
n∑

k=0

l̂k,n
φ
(2k+1)
f (x)

x2k+1
− 1

)
.
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Theorem

The solutions chIN (ρ, x) and sIN (ρ, x) admit the following NSBF
representations

chIN (ρ, x) = cos(ρx) +
∞∑
n=0

(−1)ngn(x)j2n(ρx),

sIN (ρ, x) =
sin(ρx)

ρ
+

1

ρ

∞∑
n=0

(−1)nsn(x)j2n+1(ρx),

where jν stands for the spherical Bessel function
jν(z) =

√
π
2z
Jν+ 1

2
(z). The series converge pointwise with respect to

x in (0, b] and uniformly with respect to ρ on any compact subset of
the complex ρ-plane.
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Moreover, for M ∈ N the functions

chIN ,M(ρ, x) = cos(ρx) +
M∑
n=0

(−1)ngn(x)j2n(ρx),

sIN ,M(ρ, x) =
sin(ρx)

ρ
+

1

ρ

M∑
n=0

(−1)nsn(x)j2n+1(ρx),

obey the estimates

|chIN (ρ, x)− chIN ,M(ρ, x)| ⩽ 2ϵ2M(x)

√
sinh(2bC)

C
,

|ρsIN (ρ, x)− ρsIN ,M(ρ, x)| ⩽ 2ϵ2M+1(x)

√
sinh(2bC)

C
,

for any ρ ∈ C belonging to the strip | Im ρ| ⩽ C, C > 0, and where
ϵM(x) = ∥Kh

IN
(x, ·)−Kh

IN ,2M(x, ·)∥L2(−x,x).
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Similar representations can be obtained for the quasiderivatives
DσIN

u := u′ − σINu.

Similar representations can be obtained for the solutions
ψH
IN
(ρ, x) and ϑIN (ρ, x) of (1) satisfying the conditions

ψH
IN
(ρ, b) = 1, (ψH

IN
)′(ρ, b) = −H,

ϑIN (ρ, b) = 0, ϑ′
IN
(ρ, b) = 1.

The following relations hold

g0(x) = chIN (0, x)− 1, s0(x) = 3

(
sIN (0, x)

x
− 1

)
.
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What’s next?

Solution of direct spectral problems. For example, the
solution of the Sturm-Liouville problem with the
Dirichlet-to-Dirichlet conditions is reduced to compute the zeros
of the characteristic function

0 = ρsIN (ρ, b) = sin(ρb) +
∞∑
n=0

(−1)nsn(b)j2n+1(ρb)

The coefficientes {αn(x)}∞n=0 can be computed by a recursive
integration procedure 3

3Similar to the procedure used in the regular case V. V. Kravchenko, L.J.
Navarro, S.M. Torba, Representation of solutions to the one-dimensional
Schrödinger equation in terms of Neumann series of Bessel functions. Appl.
Math. Comput. 314(1) (2017) 173-192.
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What’s next?

Solution of direct spectral problems. For example, the
solution of the Sturm-Liouville problem with the
Dirichlet-to-Dirichlet conditions is reduced to compute the zeros
of the characteristic function

0 = ρsIN (ρ, b) = sin(ρb) +
∞∑
n=0

(−1)nsn(b)j2n+1(ρb)

The coefficientes {αn(x)}∞n=0 can be computed by a recursive
integration procedure 3

3Similar to the procedure used in the regular case V. V. Kravchenko, L.J.
Navarro, S.M. Torba, Representation of solutions to the one-dimensional
Schrödinger equation in terms of Neumann series of Bessel functions. Appl.
Math. Comput. 314(1) (2017) 173-192.
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Practical solution of inverse problems

Gelfand-Levitan equation (eigenvalues+normalizing constants)
Substitution of the Fourier-Legendre series of the integral kernel
reduces the problem to solve a linear system of algebraic
equations where the unknowns are the coefficientes {αn}.

Problems with 2 spectrums For example, let {µ2k}∞k=1 and
{ρ2k}∞k=1 be the spectums of problems with D-D and D-N
conditions. The problem can be reduced to solve a system of
the form

sIN (ρk, x) = βkψ
0
IN

(ρk, x),

where βk are known and the unknowns are the Fourier-Legendre
coefficientes of the NSBF series of sIN and ψ0

IN
4.

4We follow the ideas presented in V. V. Kravchenko, Spectrum
completion and inverse Sturm–Liouville problems. Mathematical Methods in the
Applied Sciences, 2023, v. 46, issue 5, 5821–5835. doi:10.1002/mma.8869
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V. A. Vicente Beńıtez Vekua March 20, 2025 46 / 50



The potential q can be recovered from g0 and s0 on each
interval (xk, xk+1).

The function σ =
∫ x

0
q(s)ds+ σIN can be recovered from

f = g0 + 1 by the relation

σ(x) =
f ′(x)

f(x)
+

∫ x

x0

(
f ′(t)

f(t)

)2

dt.
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Inverse problem

��
Lin. Sys. Alg. Eq.

Unknowns NSBF coef.

��
Recover g0 or s0

��
Recover q and σ
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The results of this talk are found in
V. V. Kravchenko, V. A. Vicente-Beńıtez,Schrödinger
equation with finitely many δ-interactions: closed form, integral and
series representations for the solutions, Anal. Math. Phys. 14, 97
(2024) https://doi.org/10.1007/s13324-024-00957-4
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