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N
Introduction

In this talk, we consider the 1D Schrodinger equation of the form

N
'+ (q(m) + Zak5(x - xk)> y=Xy, O0<zxz<b NeC, (1)
k=1

where

@ g € Ly(0,b) is a complex valued function.
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In this talk, we consider the 1D Schrodinger equation of the form

N
—y"+ (q(a:) + Zaké(x - xk)> y=Xy, O0<zxz<b NeC, (1)
k=1

where
@ g € Ly(0,b) is a complex valued function.
@ 0(x) is the Dirac delta distribution.

0 0<z<x<---<zxy<band ay,...,ay € C\ {0} are the
point interactions.
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@ Schrodinger equations with distributional coefficients supported
on a set of measure zero naturally appear in various problems of
mathematical physics and have been studied in a considerable
number of publications and from different perspectives.
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@ Eq. (1) can be interpreted as a regular equation, i.e., with the
regular potential ¢ € Ly(0,b), whose solutions are continuous
and such that their first derivatives satisfy the jump condition
Y (xp+) — v (vp—) = apy(xy) at special points:
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@ Another approach consists in considering the interval [0,0] as a
quantum graph whose edges are the segments [z, T511],
k=0,...,N, (setting zo = 0, xy,1 = b), and the Schrodinger
operator with the regular potential ¢ as an unbounded operator
on the direct sum @szo H?(xy, w11), with the domain given by
the families (yx)i_, that satisfy the condition of continuity
Yr(2r—) = yrs1(zx+) and the jump condition for the derivative
Yerr(@rt) — yp(zr—) = agyr(zy) for k=1,... N:

o F. GESzTESY, W. KIRSCH, One-dimensional Schrodinger
operators with interactions singular on a discrete set, Journal
fir die reine und angewandte Mathematik 362, (1985), 28-50.
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@ Yet another approach implies a regularization of the Schrodinger
operator with point interactions, that is, finding a subdomain of
the Hilbert space Ly(0,b), where the operator defines a function
in LQ(O, b)
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operator with point interactions, that is, finding a subdomain of
the Hilbert space Ly(0,b), where the operator defines a function
in LQ(O, b)

o For this, note that the potential q(z) + S_r_, apd(z — 1)
defines a functional that belongs to the Sobolev space
H=(0,b). These forms of regularization have been studied,
rewriting the operator by means of a factorization that involves
a primitive o of the potential.
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@ Theory of transmutation operators, also called transformation
operators, is a widely used tool in studying differential equations
and spectral problems.
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potential ¢ the transmutation operator transmuting the second
derivative into the Schrodinger operator can be realized in the
form of a Volterra integral operator of the second kind.
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@ Theory of transmutation operators, also called transformation
operators, is a widely used tool in studying differential equations
and spectral problems.

@ It is known that under certain general conditions on the
potential ¢ the transmutation operator transmuting the second
derivative into the Schrodinger operator can be realized in the
form of a Volterra integral operator of the second kind.

@ Functional series representations of the transmutation kernel
have been constructed and used for practical solving direct and
inverse Sturm-Liouville problems

V. A. Vicente Benitez Vekua March 20, 2025 6 /50



e V. V. KRAVCHENKO, L.J. NAVARRO, S.M. TORBA,
Representation of solutions to the one-dimensional Schrédinger
equation in terms of Neumann series of Bessel functions. Appl.
Math. Comput. 314(1) (2017) 173-192.
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|*y”+(q+2akézk)y=>\y|

Closed form solution
(In terms of sol. of reg. eq.)

Transmutation operator

(Explicit form)

SPPS method | | NSBF representatio

Complete Systm. of Sol.

(Formai powers) Direct spectral prob. | Inverse spectral protl
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We use the following notations:

o Jy = {(;,a;)}},, which contains the information about the

point interactions.
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We use the following notations:

o Jy = {(z;,a;)}L,, which contains the information about the
point interactions.

N
@ Gy, () = Z apd(x — 1) (the distributional part of the
k=1
potential).
oL, := —% + q(x) (the regular Schrodinger operator).

o L5, =L, + ¢, (ub) )

e 7(0,b) = C§°(0,b) (test functions), Z'(0,b) (distributions),
H*(0,b) = W*2(0,b), HL(0,b) = W2(0,b) = 2(0,b)
H=(0,0) = (Hy(0,b))".
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@ Foru € Ly,:(0,b), L5, u defines a distribution in 2'(0,0) as
follows

b N
(Lgayu, ¢)Cg°(o,b) = /0 u(x)Lyp(x)de + Z aru(zy) ().
k=1
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@ Foru € Ly,:(0,b), L5, u defines a distribution in 2'(0,0) as
follows

b N
(Lgayu, ¢)Cg°(o,b) = /0 u(x)Lyp(x)de + Z aru(zy) ().
k=1

@ The function u must be well defined at the points x,
k=1,...,N.

@ When u € H'(0,b), the distribution L, 5, u can be extended to
a functional in H~1(0,b) as follows

(Lt 0) 3 0 / {0 (@) (2) + g(@)ulz)o(z)}d
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|
e Fe'0,b)is L2 regular if there exists g € Ly(0, b) such that

(FQSCOCOIJ fog¢

Proposition

If w € Lajoc(0,b), then the distribution L, 5, u is Lo-regular iff the
following conditions hold.
© @ Foreachk=0,...,N, uly, o.,1) € H*(zk, Ths1)-

Q uec AC|0,0].

© The discontinuities of the derivative u’ are located at the points zy,
k=1,...,N, and the jumps are given by

o (zp+) — v (k—) = aju(xy) fork=1,---,N. (2)

In such case,

(Lq,jNu, ¢)C§°(O,b) = (Lqu, ¢)C’§°(0,b) for all qzﬁ € C{)"’(O, b) (3)

= o
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N
Closed form solution

@ The Ly-regularization domain of L, 5, , denoted by
Dy (L, 5, ), is the set of all functions u € Lo ,.(0, b) satisfying
conditions 1,2 and 3 of the previous proposition.
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@ A function u € L9 ,.(0,b) is a solution of Eq. (1) iff
u € Dy (L,5,) and for each £k =0, ..., N, the restriction
U|(24,21.,) 15 @ solution of the regular Schrédinger equation

—y"(x) + q(x)y(x) = My(z) for oy <z < xpy1.  (4)
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@ The Ly-regularization domain of L, 5, , denoted by
Dy (L, 5, ), is the set of all functions u € Lo ,.(0, b) satisfying
conditions 1,2 and 3 of the previous proposition.

@ A function u € L9 ,.(0,b) is a solution of Eq. (1) iff
u € Dy (L,5,) and for each £k =0, ..., N, the restriction
U|(24,21.,) 15 @ solution of the regular Schrédinger equation

—y"(x) + q(x)y(x) = My(z) for oy <z < xpy1.  (4)

@ In what follows, denote \ = p?, p € C.
@ Let S;(p, z) be the unique solution of the Cauchy problem

—Sl(p, ) + q(z + 21)Sk(p, ) = p*Sk(pyz), 0<x <b—uxy,
gk(ﬂ? 0) =0, %(p,O) =1
(5)
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@ S(p,x — xy) is the solution of L,u = p?u on (xy,b) with initial
conditions u(xy) = 0, u/(x) = 1.

1See Ch. 3 of V. S. VLADIMIROV, Equations of Mathematical Physics. New
York: Marcel Dekker; 1971.
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@ S(p,x — xy) is the solution of L,u = p?u on (xy,b) with initial
conditions u(xy) = 0, u/(x) = 1.

@ H(t) is the Heaviside function.

o (L,—p?) (H(z — zg)Sk(p, x — 1)) = —6(x — ) for
z < T < b

@ We denote by Jy the set of finite sequences J = (j1,..., /i)
with 1 <I <N, {j1,...,5} C{Ll,...,N}and j; <--- < j.

e Given J € Jy, the length of J is denoted by |.J| and we define
= Qg g

@ x4 denotes the characteristic function of the interval [—A, A].

1See Ch. 3 of V. S. VLADIMIROV, Equations of Mathematical Physics. New
York: Marcel Dekker; 1971.
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Theorem

Given ug,u; € C, the unique solution uy, € Ds (L5, ) of the
Cauchy problem

Lysyu(z) = Au(z), 0<x<b,
u(0) = up, v'(0) = u;.

has the form
sy (p,7) = ii(p, @ Z axii(p, 7)) H(z — )3k (p, = — )

|J]-1

+ Z Oz(]H(I—:lej‘)ﬁ(p,le) H gjl(pvszﬂ _sz) gj\.n(p’x_xjm)

JEIN =1
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where u(p, ) is the unique solution of the regular Schrodinger
equation
L,i(p,z) = p*u(p,x), 0<z<b,

satisfying the initial conditions u(p, 0) = ug, u'(p,0) = ;.
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Example

Denote by egN (p, ) the unique solution of

N
—y" + (Z ad(r — xk)> y=ply, 0<xz<b,
5=l

satisfying e _(p,0) = 1, (eJN) (p,0) = ip. In this case we have

Sk(p, ) = % for k=1,..., N. Hence, the solution € _(p,
the form
NI EE sin(p(z — 1))
egN(p,x) =eP* 4 Zake’pmkH(ac - xk)%
k=1
|7]-1

x) has

+ Z OCJH(.T}—wle‘ )eiple
JEIN =1

V. A. Vicente Benitez Vekua March 20, 2025

p p

H Sin(p($jl+1 - :Cjz)) sin(p(z — Ljia) ) )

16 /50



|
Transmutation operators

@ Let h € C. Denote by €, (p, ) the unique solution of the regular
equation satisfying ¢5,(p,0) = 1, €, (p,0) = ip + h.

2V. A. MARCHENKO, Sturm-Liouville operators and applications, Birkh3user,
Basel, 1986.
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Transmutation operators

@ Let h € C. Denote by €, (p, ) the unique solution of the regular
equation satisfying ¢5,(p,0) = 1, €, (p,0) = ip + h.

o There exists a kernel2 K" € C'(Q) N H(£2), where
Q= {(x t) €R2|O<x<b |t| <z}, such that
KMz,z)="1+1 L a(s)ds, K"z, —x) = and

enlp, ) = e** +/ K"(z,t)e'dt

2V. A. MARCHENKO, Sturm-Liouville operators and applications, Birkh3user,
Basel, 1986.
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-
@ For each k € {1,..., N} there exists a kernel
Hy € C(Q) N HY(Y,) with
Q= {(:C t) ER?|0<z<b—uay, |t| <z} and
Hy(z, z) 3 f“x" q(s)ds, ﬁk(x, —z) =0, such that

Se(pom) = sin(p / Hk sm ) 0t
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@ For each k € {1,..., N} there exists a kernel
Hy € C(Q) N HY(Y,) with
Q= {(:C t) ER?|0<z<b—uay, |t| <z} and
Hy(z, z) 3 f“x" q(s)ds, FAIk(x, —z) =0, such that

Se(pom) = sin(p / Hk sm ) 0t

@ From this we obtain the representation

T—Tp ~ )
Sk(p,x —xp) = / K (z,t)edt,

—(z—=)

_ 1 1
Ky(x,t) = 5ch_wk(t) + 5 /| Hy(x — xg, s)ds.
¢
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@ The unique solution ej (p, x) of the eq with point interactions
which satisfies the initial conditions €5 _(p,0) =1,

(eh ) (p,0) =ip+ his given by

N
eh(p,x) = En(p,x) + Y onenlp xn)H(x — 21)8k(p, v — )
k=1
1J]-1
+ Z aJH(CU_mj\J\)gh(p?xh) H 55, (ps Ljppr — j,) gjm(pvx_xj
JeIn =1
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Theorem
There exists a kernel K} (x,t) defined on Q such that

(o) =+ [ KD (o, 07t ()

For any 0 < x < b, Kg‘N(a:, t) is piecewise absolutely continuous with
respect to the variable t € [—x, x| and satisfies
K} (x,-) € Ly(—x,x). Furthermore, K € Ly(Q).
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The explicit form of the kernel is
K:,]lN (CCJ) = Xw(t)l?h(xvt)

+ 3 anH (@ = 21) (Xzwy 2,01 OB, = 2k) + Xor K" (@8, 8) * Xomor (O Ri(2,1))

k=1
|J|—1\ *
+ Z O‘JH(xiju‘) H (XZjl+1—Zjl (t)Kjl(Ilerl:t))
JeIn =1

* (X-T—(mjm —ajy) Oy 5 (@t = 25,) + X (K" () * Xa—aj ;1 (VK 5y (@, t)>'
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Example

Consider the equation —y” + a16(z — x1)y = p®y. In this case the
solution €9 (p, z) is given by

e, (p,z) = € + a1 H(z — xl)w'

We have

g1 sin(P(x - $1)) _ l/x_xl eip(t—l—zl)dt _ l/m eiPt dt .
P 2 x 2 2

1—T T1—T

Hence €3 (p,z) = e + [ K3 (z,t)e''dt with

g
Kgl(x, t) = 7H(m — X1) X[221—2,0] (1)

= = = = =
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Example

Now we consider the equation with two interactions
Js = {(a1,21), (a2, 2)}. In this case, the solution €] (p,z) has the

form

sin(p(:r — xl)) + a2€ipx2H(x _ m)sin(p(x T
P P

eg2 (p,x) = P ale’mlH(w — 1)

+ e H(z — x3) sin(p(zg — 1)) sin(p(z — 2)) ;
p P

and the transmutation kernel K3 (x,t) has the form

asH (x — x9)

o H(z — x1)
—X[leﬂr,w} (t) + fX[Q:r]fx,z] (t)

2
ajoeH(x — x9)
4

KgQ(m,t) =

(XIQ*QTI * Xxfam) (f - Tl)
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Direct computation shows that

Xzo—x1 ¥ Xz—ao (t - xl) =

0, t & [2z1 — z, 2],

t+x — 211, 20 —x <t < —|2x9 — x — 21| + 21,
T—x1 — 220 —x — 21|, —[220—x—x1|+ 21 <E<|2B2—z — 1|+ 11
x—t, |20 — 2 — 21|+ 21 <t < .

In the next figure, we can see some level curves of the kernel

K3 (z,t) (as a function of t), J, = {(0,25,1), (0,75,2)}, for some
values of z.
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Proposition

The integral transmutation kernel K?N satisfies the following Goursat
conditions for z € [0, b]

1 * h
K‘?N(Jc,x) =5 (h +/0 q(s)ds + agN(a:)) and K?N(x, —x) = >
7

where

o5y (T) == ZozkH(x — ).

Thus, 2K% (x,z) is a (distributional) antiderivative of the potential
q() + gsn (2).
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Let ¢4 (p,x) and s;, (p, ) be the solutions of Eq. (1) satisfying the

initial conditions
CSLN(p7 0) - 17 (CSLN)/(Pa 0) - ha

S35 (p,0) =0, s’jN(/),O) =1.

egN (prx)+eng (*p,z) and

Note that ¢ (p,z) = >
el x)—el (—px
Sy (pyx) = G )22'ij( ) Hence
(o) = cos(pn) + [ G, ant)cos(pi
0
sin(px v sin(pt
Sy (pyx) = (p2) +/ Sy (z,t) ( )dt,
P 0 P
where
Gh (x,t) = K2 (x,t) + K! (z,—1)
IN ) IN ? In ) )

K (z,—t).

March 20, 2025

fng](g; t) = ZK?%V(QT,t) -

V. A. Vicente Benitez Vekua
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N
The SPPS Method

o Let f € Dy(L,5, ) be a nonvanishing solution of equation
Lysyf=0.
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N
The SPPS Method

o Let f € Dy(L,5, ) be a nonvanishing solution of equation

L, f = 0. )
o We define the following recursive integrals: X© = X0 =1,
and for k € N
)N((k)(x) = k;/ )N((k_l)(s) (fz(s))(_l)ki1 ds, (8)
0
X®(g) =k / XED(s) (£2()) " ds. (9)
0
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N
The SPPS Method

o Let f € Dy(L,5, ) be a nonvanishing solution of equation

L, f = 0. )
o We define the following recursive integrals: X© = X0 =1,
and for k € N

)}(k)(@ — k/om )N((k—l)(s) (fz(s))(—l)’“l ds, (8)
X®(g) =k /0 " x k=) (£2(s) ™" ds. (9)

@ The functions {ap}k)(a:) > o defined by

K)oy . f(ff))z(k)(ﬂv), if k& even,
oy () = {f(:c)X“f)(x), if k odd. (10)

for k € Ny, are called the formal powers associated to f.
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|
Theorem (SPPS method)

The functions

00 (_1)kp2k¢5£2k) (1") 0o (_1)kp2k90502k+1) ($
w(pa) =D —Gpi—— wleD) =) —a
k=0 k=0

belong to Dy (L, 3, ), and {uo(p, x),u1(p, )} is a fundamental set of
solutions for the equation with point interactions, satisfying the initial

conditions

uO(ﬂa O) = f<0)7u6(p7 O) = f/ O)? (11)

1
ui(p,0) = 0,4 (p,0) = —, 12
The series converge absolutely and uniformly on x € [0, ], the series
of the derivatives converge in Ls(0,b) and the series of the second
derivatives converge in Lo(zj, x;41), 7 =0,--- , N.
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With respect to p the series converge absolutely and uniformly on any
compact subset of the complex p-plane.

@ The proof of the convergence is given by the estimates of the
form

X)) <MD, X0 (@)] < MPY for all z € [0.5),

and the relations for the derivatives:

!
D = £
f 7
o ) _ S (k—2)
D p; :7g0f +k(k = 1)p;

@ The formal powers satisfy the conditions

Loy} =0, k=01, and Ly} = —k(k—1)0} >, k > 2,

) k )
that is, {gogf )},;";0 is an —L, 5, -base.
s e



Proposition

Let {u,v} € Dy (L, 5, ) be a fundamental set of solutions for (1).
Then there exist constants ¢y, co € C such that the solution
f = c1u + cyv does not vanish in the whole segment [0, b].

Consequently, there exists a pair of constants (c;,cz) € C?\ {(0,0)}
such that

N
yo(x) = 1 + cow + Z ak(cr + comp)H(x — xp) (x — xp)
k=1
7|1
+ Z ay(cr + CQxh)H(x - :Eju\) H (szﬂ - le) (x — xj|J|)
JeEIN =1

is a non-vanishing solution of the the equation with purely
distributional potential for p = 0 (if ay, ..., € (0,00), it is enough
with choosing ¢; = 1, ¢3 = 0).
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Theorem
Define the recursive integrals {Y ")} and {Y ®)12°  as follows:
YO =y©® =1, and fork > 1
TY® (s 2(s)ds, if k is even,
ds, if k is odd,
0 yo(s)
- y s)ds, if k is odd,
Y® () = Jo e 779 (S) vo(s) o (14)
d , if k is even.
0 y3(s)
Define
Zf/ 2k ZY 2k+1 (15)
k=0 k=0
Vekua March 20, 2025 32/50



Then {fo, f1} C Dy (Lys5,) is a fundamental set of solution for

L, 5, u = 0 satisfying the initial conditions f,(0) = ¢1, f;(0) = c2,
f1(0) =0, f{(0) = 1. Both series converge uniformly and absolutely
on z € [0,b]. The series of the derivatives converge in Ly(0,b), and
on each interval [z;,x41], 7 =0,..., N, the series of the second
derivatives converge in Ly(x;, x;4+1). Hence there exist constants
C1,Cy € C such that f = C' fo + C5fy is a non-vanishing solution of
Lq,jNu =0in [0, b]
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|
Transmutation property

@ Suppose that f(0) = 1 and set h = f/(0).
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Transmutation property

@ Suppose that f(0) = 1 and set h = f/(0).

o Let KgN be the transmutation kernel associated to h = f/(0)
and define the operator

T) u(z): /fot (t)dt.
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Transmutation property

@ Suppose that f(0) = 1 and set h = f/(0).

o Let KgN be the transmutation kernel associated to h = f/(0)
and define the operator

T) u(z): /fot (t)dt.

o Note that TS € B(La(—b,b), L»(0,b)).
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Transmutation property

@ Suppose that f(0) = 1 and set h = f/(0).

o Let KgN be the transmutation kernel associated to h = f/(0)
and define the operator

T) u(z): /fot (t)dt.

o Note that TS € B(La(—b,b), L»(0,b)).
o el (p,x) =T [e].

V. A. Vicente Benitez Vekua March 20, 2025 34 /50



|
Transmutation property

@ Suppose that f(0) = 1 and set h = f/(0).

o Let KgN be the transmutation kernel associated to h = f/(0)
and define the operator

T) u(z): /fot (t)dt.

o Note that TS € B(La(—b,b), L»(0,b)).

o o, (p.x) =T, [,

@ By the SPPS method,

h (p,x) = i M

€3y I
k=0 ’
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@ Substituting the Taylor series of the exponential in T§N [e’*] and
comparing with the SPPS series we obtain:
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@ Substituting the Taylor series of the exponential in T§N [e””*] and
comparing with the SPPS series we obtain:

Theorem

The transmutation operator T§N satisfies the following relations

TS [+*] =P (x) VkeN, (16)
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@ Substituting the Taylor series of the exponential in T§N [e””*] and
comparing with the SPPS series we obtain:

Theorem

The transmutation operator T§N satisfies the following relations

TS [+*] =P (x) VkeN, (16)

e Since {gpgck)}zozo are an —L, 5, -base, by linearity we get the
transmutation relation

I%MTgp:—TMD%

for all p € P[—b,b] = Span{z*}2.
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o Relation L5, T p= —T5,D? can be written as
T o) = O+ O ) 1) [ s [ 16T, s
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o Relation L5, T p= —T5,D? can be written as
T o) = O+ O ) 1) [ s [ 16T, s

@ Since the operators involved are bounded and P[—b, b] is dense
in H?(—b,b) we get the following result
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o Relation L5, T p= —T5,D? can be written as

T o) = O+ O ) 1) [ s [ 16T, s

@ Since the operators involved are bounded and P[—b, b] is dense
in H?(—b,b) we get the following result

Theorem

The operator T§N is a transmutation operator for the pair Ly,
—D? in H*(—b,b), that is, T{ (H*(=b,b)) C D, (Lgs,) and

Lq’jNTjNU = —T;;ND2u Yu € Hz(—b, b)
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|
Fourier-Legendre and NSBF expansions

e For z € (0, b] fixed, KCJ;N(x, -) € Lo(—x, x), hence it admits a
Fourier series in the orthonormal basis {Pn (%)}ZOZO, where
{P,(1)}>2, are the Legendre polynomials.
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e For z € (0, b] fixed, KCJ;N(x, -) € Lo(—x, x), hence it admits a
Fourier series in the orthonormal basis {Pn (%)}ZOZO, where
{P,(1)}>2, are the Legendre polynomials.

o Hence K% (,t) = i () (3)

T T

n=0
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|
Fourier-Legendre and NSBF expansions

e For z € (0, b] fixed, KCJ;N(x, -) € Lo(—x, x), hence it admits a
Fourier series in the orthonormal basis {Pn (%) }ZOZO
{P,(1)}>2, are the Legendre polynomials.

o Hence K% (,t) = i () <3)

T T

. where

n=0

@ The coefficients are given by

1 xX
an(x) = (n + 5) / K;’}N(x,t)Pn (%) dt Vn € Ny
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Example

Consider the kernel K3 (x,t) = % H (% — 1) X[24,-a.0]- In this case,

the Fourier-Legendre coefficients have the form

an() = 22 (n + %) Hz — ) /2_

1 1
:%(n+§) xH(x—:vl)/Zmll

= % H(x — z1)(x — x1). Using formula
4 (P,1(t) — P,_1(t)) for n € N, and that P,(1) =0

From this we obtain ag(x)

Pn(t) = 2n1+1$
for all n € N, we have

4 73

P %
an,(x) = %xH(x — 1) |:Pn—1 (ﬂ - 1) — Py (% -1

t
P, (_) d
x

P (t)dt.

)|

V. A. Vicente Benitez Vekua
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@ Similar representations can be obtained for the cosine and sine
kernels:

= Splx t
SjN(x7t> = Z - )P2n+1 <E) )

where the coefficients are given by

() = 200 (2) = (4n +1) /0 "G (a,0) Py (%) dt,

’ t
Sn(x) = 2a9,41 = (4n + 3)/ Sy (7,6) Papyq (E) dt.
0
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@ For every n € Ny we write the Legendre polynomial P,(z) in the
form P, (2) = Y 1 o lkn2".

@ Note that if n is even, [;,, = 0 for odd k, and
Pgn(2’> = ZZ:O kaZZk With ka = lghgn.

(. noo7 o 2k41 ik T
e Similarly Pp,q1(2) = Zk:o lknz towith [, = lokt1,2n41-

Proposition

The coefficients {a,(z)}52, of the Fourier-Legendre expansion of the
canonical transmutation kernel KgN (x,t) are given by

1 n (k)(:v)
an(x) = (n + 5) (; lk,n@fT — 1) )
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The coefficients of the canonical cosine and sine kernels satisfy the
following relations for all n € Ny

n (2K)
gn(z) = (dn+1) (Z Zk,n@fm—%(x) - 1) :

k=0
n (2k+1)
. P (z)
$p(x) = (4n + 3) (Z lk,nfsz - 1) .
k=0

V. A. Vicente Benitez Vekua March 20, 2025
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Theorem

The solutions c& (p,x) and s3, (p,z) admit the following NSBF
representations

ek (p,x) = cos(pz) + Z () jan(pz),
o (505) — Sm(p”) T %;<—1>“sn<x>j2n+l<px>,

Where jl, stands for the spherical Bessel function
Viadl +1 . The series converge pointwise with respect to

xin (O b| and unlform/y with respect to p on any compact subset of
the complex p-plane.
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Moreover, for M € N the functions

hoa(pyx) = cos(pz) + Y _(—1)"gn(@)j2n(p),

sin(px)

syy,m(p, ) =

obey the estimates

|5 (0, %) = Ay aa(p, 7)] < 2201 ()

1psay (p, ) — psay . (p, )| < 2620111 ()

for any p € C belonging to the strip |Im p| < C, C' > 0, and where
em(z) = 1K (2,) = K5 o (%, )| La(-a0)-

V. A. Vicente Benitez

=

n

Vekua
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=0

(=1)"sn(z)d2n+1(p2),

sinh(26C)
C Y
sinh(26C)
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@ Similar representations can be obtained for the quasiderivatives

Dy, ui=u'— o5 u.
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@ Similar representations can be obtained for the quasiderivatives
Do, .
@ Similar representations can be obtained for the solutions
I (p,x) and 95, (p, x) of (1) satisfying the conditions

1#%(0;6) = 17 (ij)( Ps ) H7
7“93N<p? b) = 07 JN(p’ b) =1L

ui=u — oy,
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@ Similar representations can be obtained for the quasiderivatives
Dy, u:=1u— o5,u.

@ Similar representations can be obtained for the solutions
I (p,x) and 95, (p, x) of (1) satisfying the conditions

1#%(0;6) :17 (ij)( Ps ) H7
ﬁjN(ﬂ’b) = 07 19/31\7( ?b) =1

TIN

@ The following relations hold

golw) = i (0,2) — 1, so(z) =3 (L - 1) |
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N
What's next?

@ Solution of direct spectral problems. For example, the
solution of the Sturm-Liouville problem with the
Dirichlet-to-Dirichlet conditions is reduced to compute the zeros
of the characteristic function

0= PSTN (p, b) = sin(pb) + Z(_l)nsn(b)j2n+l(pb)

n=0

3Similar to the procedure used in the regular case V. V. KRAVCHENKO, L.J.
NAVARRO, S.M. TORBA, Representation of solutions to the one-dimensional
Schrédinger equation in terms of Neumann series of Bessel functions. Appl.

Math. Comput. 314(1) (2017) 173-192.
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What's next?

@ Solution of direct spectral problems. For example, the
solution of the Sturm-Liouville problem with the
Dirichlet-to-Dirichlet conditions is reduced to compute the zeros
of the characteristic function

0= PSTN (p, b) = sin(pb) + Z(_l)nsn(b)j2n+l(pb)

n=0

@ The coefficientes {a,(z)}22, can be computed by a recursive
integration procedure 3

3Similar to the procedure used in the regular case V. V. KRAVCHENKO, L.J.
NAVARRO, S.M. TORBA, Representation of solutions to the one-dimensional
Schrédinger equation in terms of Neumann series of Bessel functions. Appl.

Math. Comput. 314(1) (2017) 173-192.
Vekua March 20, 2025 45 /50



@ Practical solution of inverse problems
o Gelfand-Levitan equation (eigenvalues+normalizing constants)
Substitution of the Fourier-Legendre series of the integral kernel
reduces the problem to solve a linear system of algebraic
equations where the unknowns are the coefficientes {ay, }.

*We follow the ideas presented in V. V. KRAVCHENKO, Spectrum
completion and inverse Sturm—Liouville problems. Mathematical Methods in the
Applied Sciences, 2023, v. 46, issue 5, 5821-5835. doi:10.1002/mma.8869
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@ Practical solution of inverse problems

o Gelfand-Levitan equation (eigenvalues+normalizing constants)
Substitution of the Fourier-Legendre series of the integral kernel
reduces the problem to solve a linear system of algebraic
equations where the unknowns are the coefficientes {ay, }.

o Problems with 2 spectrums For example, let {z:2}2° | and
{p?}72, be the spectums of problems with D-D and D-N
conditions. The problem can be reduced to solve a system of
the form

s3x (P ) = BetS, (pr, @),

where (i are known and the unknowns are the Fourier-Legendre
coefficientes of the NSBF series of s5, and ng“.

*We follow the ideas presented in V. V. KRAVCHENKO, Spectrum
completion and inverse Sturm—Liouville problems. Mathematical Methods in the
Applied Sciences, 2023, v. 46, issue 5, 5821-5835. doi:10.1002/mma.8869
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@ The potential ¢ can be recovered from gy and sy on each
interval (zx, Tg11).

@ The function o = fo s)ds + o5, can be recovered from
f =90+ 1 by the relatlon

o= fiat+ [ (56)
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The results of this talk are found in

V. V. KRAVCHENKO, V. A. VICENTE-BENITEZ, Schrédinger
equation with finitely many é-interactions: closed form, integral and
series representations for the solutions, Anal. Math. Phys. 14, 97
(2024) https://doi.org/10.1007 /s13324-024-00957-4
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